5-C (SciPy)
Importing linalg module
Both A and B (import scipy.linalg and from scipy import linalg)
scipy.linalg
Module used for linear algebra
Function to find eigenvalues and eigenvectors
scipy.linalg.eig()
Function to calculate matrix rank
scipy.linalg.matrix_rank()
optimize.fsolve() input requirement
A function and initial guess
Requirements for integrate.quad()
A function, lower limit, and upper limit
Third and fourth parameters of integrate.quad()
Additional arguments for the function
Coefficient matrix format for linalg.solve()
As a NumPy 2D array
scipy.integrate.trapz()
Calculates integrals using trapezoidal rule
scipy.linalg.norm()
Calculates vector or matrix norm
scipy.optimize.root()
Finds roots of equations
scipy.linalg specialization
Linear algebra operations
scipy.linalg.pinv()
Pseudo-inverse of a matrix
scipy.linalg.lstsq()
Solves least squares problems
Reason to use SciPy
Tested, optimized, and reliable implementations
Additional information from integrate.quad()
The integral value and absolute error estimate
Second parameter of integrate.quad()
The lower limit of integration
optimize.fsolve() return on success
The solution array
Providing bounds to optimize.fsolve()
Using the bounds parameter
Function return for optimize.fsolve()
f(x) = 0 at solution
