Chapter 5.5 Pre Calculus Math 191 DVC
find all solutions 4 sin x- 1 = 2 sin x
x= pi/6 +2pi(N) or x=5pi/6 +2pi(N)
Find all solutions (cosx=-1/2)
x=2pi/3+2pi(N) or x=4pi/3+2pi(N)
find all solutions 3sin x + 5 = -2sin x
x=3pi/2+2pi(N)
find all solutions (2 cos x + sqrt(3)=0)
x=5pi/6 +2pi(N) or x=7pi/6+2pi(N)
Find all the solutions (tanx=0)
x=pi(N)
Find all solutions (sinx=sqrt3/2)
x=pi/3+2pi(N) or x=2pi/3+2pi(N)
solve for equation on the interval [0,2pi) (tan x/2=sqrt(3))
2pi/3
solve for equation on the interval [0,2pi) (2cos^2+3cosx+1=0)
2pi/3, pi, 4pi/3
solve for equation on the interval [0,2pi) (2sin^2(x)=sin(x)+3
3pi/2
solve for equation on the interval (sec 3x/2 =-2)
4pi/9, 8pi/9, 16pi/9
solve for equations on the interval [0,2pi) (cos4x=sqrt(3)/2)
5pi/24 , 7pi/24 , 17pi/24, 19pi/24, 29pi/24, 31pi/24, 41pi/24, 43pi/24
Steps to solve for cosecant, secant or cotangent
Sept 1.) Isolate the trig function Step 2.) Flip both sides so you get the funtion in terms of sin, cosine, or tangent. Step 3.)Proceed to solve using the help of refrence angle Step 4.) Solve for all radian solutions
Steps to solving an question with multiple angles
Step 0.) Make sure the trig function is isolated. Step 1.)See the inside as an angle. Call it X Sept 2.)Find reference angle X Step 3.)Set X to the angle but add the period (pi or 2pi) times the N (integer) Sept 4.) Solve for the variable. You now have all solutions Step 5.)Then replace N to find all answers between interval.
Is this a solution (cos 2x/3=sin 2x) (x=pi/3)
not a solution
Is this a solution (sinx=sqrt3/2) (x=pi/6)
not a solution
solve for equation on the interval [0,2pi) (tan3x=sqrt(3)/3)
pi/18, 7pi/18, 13pi/18, 19pi/18, 25pi/18, 31pi/18
solve for equation on the interval [0,2pi) (2sin^2(x)-sin(x)-1=0)
pi/2, 7pi/6, 11pi/6
Find all solutions tanx=1
pi/4+PI(N)
Solve for equation on the interval [0,2pi) (sin2x=sqrt(3)/2)
pi/6, pi/3, 7pi/6, 4pi/3
Is this a solution (cosx=-1/2) (x=2pi/3)
solution
Is this a solution (cosx=sqrt2/2) (x=Pi/4)?
solution