DS Exam 1 Question 5

Lakukan tugas rumah & ujian kamu dengan baik sekarang menggunakan Quizwiz!

Comparing to quick sort

Best case efficiency is O(nlog^2n) and worst case of O(n^2) compared to quick sort of best case O(nlogn) and worst case O(n^2)

Empirical results

H=3H+1 shows average efficiency of shell sort in terms of number of comparisons which is O(n(log(n)^2) which is almost O(n^1.5). The best case efficiency is O(nlog(n)), similar to quick sort. Worst case is O(n^2), similar to quick sort.

Impact on performance for shell sort

Increment sequences impact performance. With a por sequence, such as H is a decreasing power of 2, large values in odd positions will not be sorted until H = 1. This requires large movements for extreme elements at the ends and reduce efficiency. Many elements will be compared repeatedly which is unnecessary.

Describe Shell sort

It's a modified insertion sort that improves the general efficiency by exchanging items far apart. The list uses an increment sequence where large gap value H is declared and an insertion sort is performed on every Hth element of the list. This is done for each fractional set of H-spaced elements within the list and the list is h-sorted. The process is repeated on smaller and smaller gaps until H is reduced to 1.

The number of repetitions of segmented insertion sort

O(logN). Outer loop of each SIS is O(n). Inner loop depends on the current order of the data within that segment. The total number of comparisons in this case is O(Anlog(n)) where A is unknown.

Comparing shell to insertion

Shell takes advantage of improved efficiency of insertion sort for mostly sorted list. Gap rearrangements allow elements to move long distances in the original list, reducing large amounts of disorder quickly and leaves less work for smaller h-sort steps. Shell sort breaks the O(n^2) worst case efficiency

Worst case efficienciesfor shell sort

Shell: N/(2^k): O(N^1) [when N=2^p] Hibbard: (2^k)-1: O(N^(3/2)) Knuth: ((3^k)-1)/2: O(N^(3/2))

Stability of shell sort

Since there are many different incremental sequences that can be applied, this is unstable and it's hard to configure an estimated efficiency analysis.

Pseudocode for shell sort

int i, j, h, temp; for (h=N/2; h>0; h/=2){ for (i = h; i < N; i++){ temp = A[i]; for (j = i; j>= h && A[j-h] > temp; j-=h) A[j] = A[j-h];} A[j] = temp;}


Set pelajaran terkait

Chapter 1: The Science of Biology ( Definition)

View Set

OAE Elementary Education Subtest 2 (Math)

View Set

Biol 1406 - Chapter 3, Water and Life

View Set

Sloan Man. Fin. Exam 2 Ratio Interpretations

View Set

AP Bio Chapter 8: Photosynthesis

View Set