Unit 4 Day 2: Quadratics in Standard Form
x=-5
Find the axis of symmetry of: y=x²+10x+33
x=3
Find the axis of symmetry of: y=x²-6x+5
x=0
Find the axis of symmetry: y=x²-3
Min @ y=-6
Find the max/min point: y=x²+12x+30
y=(x+5)²+8
Find the vertex form of y=x²+10x+33
y=(x+8)²+7
Find the vertex form of y=x²+16x+71
y=(x+1)²+3
Find the vertex form of y=x²+2x+4
y=(x+2)²-4
Find the vertex form of y=x²+4x
y=(x+2)²+2
Find the vertex form of y=x²+4x+6
y=(x+3)²+4
Find the vertex form of y=x²+6x+13
y=(x+4.5)²-0.25
Find the vertex form of y=x²+9x+20
y=(x-5)²-2
Find the vertex form of y=x²-10x+23
y=(x-6)²+10
Find the vertex form of y=x²-12x+46
y=(x-1)²-6
Find the vertex form of y=x²-2x-5
y=(x-3)²-4
Find the vertex form of y=x²-6x+5
y=(x-4)²-5
Find the vertex form of y=x²-8x+11
(0,-3)
Find the vertex of f(x)=-2x²-3
(-1,1)
Find the vertex of f(x)=x²+2x+2
Vertex: (-1, 8)
Find the vertex of:
Vertex: (-3, -13)
Find the vertex of:
Vertex: (0, -6)
Find the vertex of:
Vertex: (0,3)
Find the vertex of:
Vertex: (4, -16)
Find the vertex of:
Vertex: (6, 77)
Find the vertex of: y=-2x²+24x+5
Vertex: (7,0)
Find the vertex of: y=-2x²+28x-98
Vertex (1, -4)
Find the vertex of: y=-2x²+4x-6
Vertex: (5,-3)
Find the vertex of: y=-3x²+30x-78
Vertex (1,1)
Find the vertex of: y=3x²-6x+4
Vertex: (4,1)
Find the vertex of: y=5x²-40x+81
Vertex: (-2,-4)
Find the vertex of: y=x²+4x
Vertex: (6,10)
Find the vertex of: y=x²-12x+46
(0,33)
Find the y-intercept of y=x²+10x+33
(0,71)
Find the y-intercept of y=x²+16x+71
(0,4)
Find the y-intercept of y=x²+2x+4
(0,0)
Find the y-intercept of y=x²+4x
(0,6)
Find the y-intercept of y=x²+4x+6
(0,13)
Find the y-intercept of y=x²+6x+13
(0,20)
Find the y-intercept of y=x²+9x+20
(0,23)
Find the y-intercept of y=x²-10x+23
(0,46)
Find the y-intercept of y=x²-12x+46
(0,-5)
Find the y-intercept of y=x²-2x-5
(0,5)
Find the y-intercept of y=x²-6x+5
(0,11)
Find the y-intercept of y=x²-8x+11
a=5 h=2 k=-7
Identify the a, h, and k-values: y=5x²-20x+13
a=1 h=-5 k=0
Identify the a, h, and k-values: y=x²+10x+25
a=1 h=-3 k=-5
Identify the a, h, and k-values: y=x²+6x+4
x=1
Identify the axis of symmetry: y=-2x²+4x+3
x=-6
Identify the axis of symmetry: y=x²+12x+36
max @ y=-16
Identify the max/min point: y=-x²-4x+12
minimum @ y=-2
Identify the max/min point: y=3x²-2
y=x²-9
Identify the vertex form equation: y=x²-9
(-3,2)
Identify the vertex:
(0,-4)
Identify the vertex:
(2,3)
Identify the vertex:
(0,5)
Identify the y intercept: f(x)=x²+2x+5
(0,3)
Identify the y intercept: f(x)=x²-3
Down
If the coefficient of x² is negative, the parabola opens ____________.
Up
If the coefficient of x² is positive, the parabola opens ____________.
Parabola
The bell-shaped graph of a quadratic function is called a ______________.
Vertex
The turning point of a parabola, either the maximum or minimum
Axis of Symmetry
A vertical line that passes through the vertex and splits the parabola in half. All points are reflected across this line.
Standard Form of a Quadratic Function
f(x) = ax²+bx+c, where a≠0
Axis of Symmetry
x=-b/2a
parent function
y=x²