AP stats chapter 7 test

Ace your homework & exams now with Quizwiz!

Carly commutes to work, and her commute time is dependent on the weather. When the weather is good, the distribution of her commute times is approximately normal with mean 20 minutes and standard deviation 2 minutes. When the weather is not good, the distribution of her commute times is approximately normal with mean 30 minutes and standard deviation 4 minutes. Suppose the probability that the weather will be good tomorrow is 0.9. Which of the following is closest to the probability that Carly's commute time tomorrow will be greater than 25 minutes?

0.0950 C

A recent study was conducted to investigate the duration of time required to complete a certain manual dexterity task. The reported mean was 10.2 seconds with a standard deviation of 16.0 seconds. Suppose the reported values are the true mean and standard deviation for the population of subjects in the study. If a random sample of 144 subjects is selected from the population, what is the approximate probability that the mean of the sample will be more than 11.0 seconds?

0.2743. B

The normal curve shown represents the sampling distribution of a sample mean for sample size n = 25, selected at random from a population with standard deviation σx.

15. C

Researchers will conduct a study of the television-viewing habits of children. They will select a simple random sample of children and record the number of hours of television the children watch per week. The researchers will report the sample mean as a point estimate for the population mean. Which of the following statements is correct for the sample mean as a point estimator?

A sample of size 25 will produce more variability of the estimator than a sample of size 50. A

A simulation was conducted using 10 fair six-sided dice, where the faces were numbered 1 through 6, respectively. All 10 dice were rolled, and the average of the 10 numbers appearing faceup was recorded. The process was repeated 20 times. Which of the following best describes the distribution being simulated?

A sampling distribution of a sample mean with n = 10, μx̄ = 3.5, and σx̄ ≈ 0.54. A

The histograms show the results of three simulations of a sampling distribution of a sample mean. For each simulation, 1,500 samples of size n were selected from the same population and the sample mean was recorded. The value of n was different for each of the three simulations.

A,C,B. A

There were 5,317 previously owned homes sold in a western city in the year 2000. The distribution of the sales prices of these homes was strongly right-skewed, with a mean of $206,274 and a standard deviation of $37,881. If all possible simple random samples of size 100 are drawn from this population and the mean is computed for each of these samples, which of the following describes the sampling distribution of the sample mean?

Approximately normal with mean $206,274 and standard deviation $3,788. A

At a certain restaurant, the distribution of wait times between ordering a meal and receiving the meal has mean 11.4 minutes and standard deviation 2.6 minutes. The restaurant manager wants to find the probability that the mean wait time will be greater than 12.0 minutes for a random sample of 84 customers. Assuming the wait times among customers are independent, which of the following describes the sampling distribution of the sample mean wait time for random samples of size 84 ?

Approximately normal with mean 11.4 minutes and standard deviation 2.6/√84 minute. B

According to government data, 22 percent of children in the United States under the age of 6 years live in households with incomes that are classified at a particular income level. A simple random sample of 300 children in the United States under the age of 6 years was selected for a study of learning in early childhood. If the government data are correct, which of the following best approximates the probability that at least 27 percent of the children in the sample live in households that are classified at the particular income level? (Note: z represents a standard normal random variable.)

B

A fair die has its faces numbered from 1 to 6. Let random variable F represent the number landing face up when the die is tossed. The probability distribution for the random variable has mean 3.5 and standard deviation 1.7078. Consider a simulation with 400 trials designed to estimate the sampling distribution of the sample mean for 5 tosses of the die. For each trial, the die is tossed 5 times, and the mean of the 5 values landing face up is recorded. The mean and standard deviation of the results of the simulation should be close to which of the following?

Mean 3.5 and standard deviation 0.7638. B

A reading specialist wanted to estimate the mean word length, in number of letters, for an elementary school history textbook. The specialist took repeated random samples of size 100 words and estimated the mean and standard deviation of the sampling distribution to be 4.9 letters and 0.15 letter, respectively. Based on the estimates for the sampling distribution, which of the following provides the best estimates of the population parameters?

Mean 4.9 letters and standard deviation 1.5 letters. C

Researchers working for a certain airline are investigating the weight of carry-on bags. The researchers will use the mean weight of a random sample of 800 carry-on bags to estimate the mean weight of all carry-on bags for the airline. Which of the following best describes the effect on the bias and the variance of the estimator if the researchers increase the sample size to 1,300 ?

The bias will remain the same and the variance will decrease. C

A manufacturer of cell phone batteries claims that the average number of recharge cycles for its batteries is 400. A consumer group will obtain a random sample of 100 of the manufacturer's batteries and will calculate the mean number of recharge cycles. Which of the following statements is justified by the central limit theorem?

The distribution of the sample means of the number of recharge cycles is approximately normal because the sample size of 100 is greater than 30. D

Based on records kept at a gas station, the distribution of gallons of gas purchased by customers is skewed to the right with mean 10 gallons and standard deviation 4 gallons. A random sample of 64 customer receipts was selected, and the sample mean number of gallons was recorded. Suppose the process of selecting a random sample of 64 receipts and recording the sample mean number of gallons was repeated for a total of 100 samples. Which of the following is the best description of a dotplot created from the 100 sample means?

The dotplot is approximately normal with mean 10 gallons and standard deviation 0.5 gallon. D

According to data from the United States Elections Project, only 36 percent of eligible voters voted in the 2014 elections. For random samples of size 40, which of the following best describes the sampling distribution of pˆ, the sample proportion of people who voted in the 2014 elections?

The sampling distribution is approximately normal, with mean 0.36 and standard deviation 0.076. A

The director of a marketing department wants to estimate the proportion of people who purchase a certain product online. The director originally planned to obtain a random sample of 2,500 people who purchased the product. However, because of budget concerns, the sample size will be reduced to 1,500 people. Which of the following describes the effect of reducing the number of people in the sample?

The variance of the sampling distribution of the estimator will increase. C

At a large corporation, the distribution of years of employment for the employees has mean 20.6 years and standard deviation 5.3 years. A random sample of 100 employees was selected and surveyed about employee satisfaction. The sample of employees had a mean 20.3 years and standard deviation 6.1 years. Remy claims that the mean of the sampling distribution of the sample mean for samples of size 100 is 20.6 years. Is Remy's claim correct?

Yes. The mean of the sampling distribution is 20.6 years. E

Which of the following pairs of sample size n and population proportion p would produce the greatest standard deviation for the sampling distribution of a sample proportion p̂?

n = 100 and p close to 1/2. E

A recent survey concluded that the proportion of American teenagers who have a cell phone is 0.27. The true population proportion of American teenagers who have a cell phone is 0.29. For samples of size 1,000 that are selected at random from this population, what are the mean and standard deviation, respectively, for the sampling distribution of the sample proportion of American teenagers who have a cell phone?

o.29, sqr (0.29)(0.71)/1000

Approximately 52 percent of all recent births were boys. In a simple random sample of 100 recent births, 49 were boys and 51 were girls. The most likely explanation for the difference between the observed results and the expected results in this case is

variability due to sampling. B


Related study sets

Financial Accounting Midterm (Chapters 1-7)

View Set

U3L1: Basics of Hypothesis Testing (Using a Critical Value or P-value to Assess the Test Statistic)

View Set