Calc 3 Final

Ace your homework & exams now with Quizwiz!

Chain rule strategy

Build a chart of functions, determine which partials to take

D =

D = fxx(a,b)fyy(a,b) - [fxy(a,b)]^2 D>0 and fxx>0, relative min D>0 and fxx<0, relative max D=0, inconclusive D<0, saddle point

Limits of multivariable functions

Replace y or x with each other or t, find a way to make the limit equal two different values

Critical points of f(x,y)

Wherever fx (∂f/∂x) and fy (∂f/∂y) = 0

Equation of a plane given a point P (x0, y0, z0) and a normal vector n <a, b, c>

a(x-x0) + b(y-y0) + c(z-z0) = 0 or a(x) + b(y) + c(z) = d

div(curlF) = ?

div(curlF) = 0

divF where F = <P(x,y,z), Q(x, y, z), R(x, y, z)>

divF = ∇ ⋅ F = ∂P/∂x + ∂Q/∂y + ∂R/∂z (scalar) If divF = 0, source free

Planes are parallel if Planes are orthogonal if

n1 and n2 are parallel n1 ⋅ n2 = 0

Surface integral (vector field) where F = <f, g, h>

s∫∫ F (f,g,h) dS = R∫∫(-(f* hx) -(g* hy) +h) dA

Surface integral (vector field) where F (r(t))

s∫∫ F (r(u,v)) dS = R∫∫ F ⋅ (∂r/∂u x ∂r/∂v) dA

Equation of a plane tangent to a surface z = f(x,y) and linear approximation

z = f(x0,y0) + fx(x0,y0)(x-x0) + fy(x0,y0)(y-y0)

dV in Spherical Coordinates

ρ^2 sinφ dρ dφ dθ ρ: radial distance from center φ: Angle from horizontal plane

Vector field F = <P, Q, R> is conservative if

∂P/∂y = ∂Q/∂x } R2 ∂P/∂z = ∂R/∂x ∂Q/∂z = ∂R/∂y

∇ = (∂/∂x)î (∂/∂y)ĵ (∂/∂z)k̂

∇f

∇f = (fx, fy, fz) Points in direction of steepest ascent |∇f| = Rate of increase in direction of steepest ascent at a certain point

To find potential function f (x, y, z) of vector field F = <P, Q, R>:

1. ∫P(x, y, z) dx, OR ∫Q(x, y, z) dy, OR ∫R(x, y, z) dz 2. ∂/∂y = Q (x, y, z) to find Cy 3. Integrate Cy with respect to y 4. ∂/∂z = R (x, y, z) to find d'(z) 5. Integrate d'(z) with respect to z

Area using Green's theorem

A = c∮x dy = -c∮y dx = 1/2* c∮xdy-ydx

Arc Length of a vector r(t) = <f(t), g(t), h(t)>

a∫b |r'(t)|

curl F where F = <P(x,y,z), Q(x, y, z), R(x, y, z)>

curlF = ∇ x F curlF (R2) = ∂Q/∂x - ∂P/∂y (vector) If curlF = 0, irrotational

Line integral formula (vector fields)

c∫ F(x,y) dr = a∫b F(r(t)) ⋅ r'(t) dt where r(t) = (1-t)(x1,y1) + t(x2,y2) a=0, b=1 or r(t) = length of curve (circle, etc)

Line integral formula (vector valued function)

c∫ f(x,y) ds = a∫b f(h(t),g(t)) * |r'(t)| dt where r(t) = (1-t)(x1,y1) + t(x2,y2) a=0, b=1 or r(t) = length of curve (circle, etc) Piecewise curves: c∫ f(x,y) ds = c1∫ +c2∫ +c3∫ ...

Green's Theorem

c∮F dr = D∫∫curlF dA c ∮F dr = D∫∫curlF dA

Chain rule Given z = f(x, y) where x = h(t) and y = g(t), find dz/dt

dz/dt = ∂f/∂x* dx/dt + ∂f/∂y* dy/dt

dA in Polar Coordinates

r dr dθ

Parametric Description of a cylinder r(u,v)

r(u,v) = <a* cosu, a* sinu, v) a:radius 0≤u≤2pi 0≤v≤h

Parametric Description of a sphere r(u,v)

r(u,v) = <a* sinu* cosv, a* sinu* sinu, a* cosu> a: radius 0≤u≤1/2pi 0≤v≤2pi

Surface integral (vector valued function) where z = g(x,y)

s∫∫ f (x,y,z) dS = D∫∫f (x,y,g(x,y))* ((∂g/∂x)^2 + (∂g/∂y)^2+1))^1/2 dA

Surface integral (vector valued function) where f(r(u,v))

s∫∫ f (x,y,z) dS = D∫∫f(r(u,v) | ru x rv | dA

Cross Product

u x v = (u2v3 - u3v2)î + (u3v1 - u1v3)ĵ + (u1v2 - u2v1)k̂ Right hand rule defines direction (u x v) ⋅ v = (u x v) ⋅ u = 0

Dot Product

u ⋅ v = u1v1 + u2v2 + u3v3 If u ⋅ v = 0, u and v are perpendicular.


Related study sets

EBP| ch 9, 13, 14, 15, 16, 17, 18

View Set

Chapter 29: Care of Patients with Noninfectious Upper Respiratory Problems

View Set

apush period 3; documents you should know

View Set

IS you made, mis exam, MIS Final Exam, Computer Networks and the Internet, ISM Artificial Intelligence, Emerging Technologies, IS 2200, Persuasive Messages and Computer Applications

View Set

History of the Recording Industry Exam #3 Review Dougan

View Set

Chemistry spring final exam review

View Set

Module 7: Check on Learning & Module Quiz

View Set

GRE Frequent Words | Brightlink Prep

View Set

Biology (40: Water and Electrolyte Balance)

View Set