Molec And Cell chapter 13

Ace your homework & exams now with Quizwiz!

The citric acid cycle is a critical sequence of reactions for energy production, which take place in the matrix of the mitochondria. The reaction cycle requires materials from the cytosol to be converted into acetyl CoA, which represents the starting point of a new cycle. Which of the following statements about acetyl CoA is true? (a) Amino acids can be converted into acetyl CoA. (b) Pyruvate is converted into acetyl CoA in the cytosol. (c) Triacylglycerol molecules are transported into the mitochondrial matrix and cleaved by lipases to produce acetyl CoA. (d) Oxaloacetate is converted directly into acetyl CoA to feed the citric acid cycle.

A (Amino acids can be converted into acetyl CoA)

In step 4 of glycolysis, a six-carbon sugar (fructose 1,6-bisphosphate) is cleaved to produce two three-carbon molecules (dihydroxyacetone phosphate and glyceraldehyde 3-phosphate). Which enzyme catalyzes this reaction? (a) aldolase (b) phosphoglucose isomerase (c) enolase (d) triose phosphate isomerase

A (aldolase)

Several different classes of enzymes are needed for the catabolism of carbohydrates. Which of the following descriptions best matches the function of an isomerase? (a) An enzyme that catalyzes the rearrangement of bonds within a single molecule. (b) An enzyme that catalyzes a change in the position of a specific chemical group within a single molecule. (c) An enzyme that catalyzes the oxidation of a molecule by removing a hydride ion. (d) An enzyme that catalyzes the addition of phosphate groups to other molecules.

A (an enzyme that catalyzes the rearrangement of bonds within a single molecule)

Select the best option to fill in the blanks of the following statement: Fermentation is a/an _____________________ process that converts _____________ into carbon dioxide and _____________________. (a) anaerobic, pyruvate, ethanol (b) anaerobic, lactate, ethanol (c) eukaryotic, glyceraldehyde 3-phosphate, ethanol (d) prokaryotic, lactate, propanol

A (anaerobic, pyruvate, ethanol)

Which of the following cells rely exclusively on glycolysis to supply them with ATP? (a) anaerobically growing yeast (b) aerobic bacteria (c) skeletal muscle cells (d) plant cells

A (anaerobically growing yeast)

What purpose does the phosphorylation of glucose to glucose 6-phosphate by the enzyme hexokinase serve as the first step in glycolysis? (a) It helps drive the uptake of glucose from outside the cell. (b) It generates a high-energy phosphate bond. (c) It converts ATP to a more useful form. (d) It enables the glucose 6-phosphate to be recognized by phosphofructokinase, the next enzyme in the glycolytic pathway.

A (it helps drive the uptake of glucose from outside the cell)

The conversion of glyceraldehyde 3-phosphate to 1,3 bisphosphoglycerate in step 6 of glycolysis generates a "high energy" phosphoanhydride bond. Which of the following best describes what happens to that bond in step 7? (a) It is hydrolyzed to drive the formation of ATP. (b) It is hydrolyzed to drive the formation of NADH. (c) It is hydrolyzed to generate pyruvate. (d) It is oxidized to CO2

A (it is hydrolyzed to drive the formation of ATP)

When glucose is being used up and not replaced from food intake, the blood sugar level can be maintained by synthesizing glucose from smaller molecules such as pyruvate or lactate. This process is called gluconeogenesis. Which organ is principally responsible for supplying glucose to the rest of the body when glucose reserves are low? (a) liver (b) pancreas (c) spleen (d) gall bladder

A (liver)

The oxygen-dependent reactions required for cellular respiration were originally thought to occur in a linear pathway. By using a competitive inhibitor for one enzyme in the pathway, investigators discovered that these reactions occur in a cycle. What compound served as the inhibitor? (a) malonate (b) malate (c) fumarate (d) succinate

A (malonate)

Glycolysis is an anaerobic process used to catabolize glucose. What does it mean for this process to be anaerobic? (a) no oxygen is required (b) no oxidation occurs (c) it takes place in the lysosome (d) glucose is broken down by the addition of electrons

A (no oxygen is required)

Foods are broken down into simple molecular subunits for distribution and use throughout the body. Which type of simple subunits, listed below, is used preferentially as an energy source? (a) simple sugars (b) proteins (c) free fatty acids (d) glycerol

A (simple sugars)

In the final stage of the oxidation of food molecules, a gradient of protons is formed across the inner mitochondrial membrane, which is normally impermeable to protons. If cells were exposed to an agent that causes the membrane to become freely permeable to protons, which of the following effects would you expect to observe? (a) The ratio of ATP to ADP in the cytoplasm would fall. (b) NADH would build up. (c) Carbon dioxide production would cease. (d) The consumption of oxygen would fall.

A (the ratio of ATP to ADP in the cytoplasm would fall)

In step 4 of the citric acid cycle, the reduction of NAD+ to NADH is coupled to the generation of CO2 and the formation of a high-energy thioester bond. The energy of the thioester bond is harnessed in step 5. What is the energy used for? (a) to generate a molecule of GTP (b) to generate a molecule of ATP (c) to generate a proton gradient (d) to generate a molecule of NADH

A (to generate a molecule of GTP)

The citric acid cycle is a series of oxidation reactions that removes carbon atoms from substrates in the form of CO2. Where do the oxygen atoms in the carbon dioxide molecules come from? (a) water (b) phosphates (c) molecular oxygen (d) acetyl CoA

A (water)

In the absence of oxygen, yeast cells can switch to a completely anaerobic metabolism called fermentation. Which of the following is a final product of fermentation in yeast?

B

Fatty acids can easily be used to generate energy for the cell. Which of the following fatty acids will yield more energy? Explain your answer. (a) CH3-CH2-CH2-CH2-CH2-CH2-CH2-CH=CH-COOH (b) CH3-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-COOH (c) CH3-CH=CH-CH2-CH2-CH2-CH2-CH=CH-COOH (d) CH3-CH2-CH2-CH2-CH2-CH2-CH2-COOH

B (CH3-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-COOH)

In the final step of the citric acid cycle, oxaloacetate is regenerated through the oxidation of malate and this is coupled with the production of which other molecule? (a) FADH (b) NADH (c) GTP (d) CO2

B (NADH)

The first energy-generating steps in glycolysis begin when glyceraldehyde 3-phosphate undergoes an energetically favorable reaction in which it is simultaneously oxidized and phosphorylated by the enzyme glyceraldehyde 3-phosphate dehydrogenase to form 1,3-bisphosphoglycerate, with the accompanying conversion of NAD+ to NADH. In a second energetically favorable reaction catalyzed by a second enzyme, the 1,3-bisphosphoglycerate is then converted to 3-phosphoglycerate, with the accompanying conversion of ADP to ATP. Which of the following statements is true about this reaction? (a) The reaction glyceraldehyde 3-phosphate à 1,3-bisphosphoglycerate should be inhibited when levels of NADH fall. (b) The ΔG° for the oxidation of the aldehyde group on glyceraldehyde 3-phosphate to form a carboxylic acid is more negative than the ΔG° for ATP hydrolysis. (c) The energy stored in the phosphate bond of glyceraldehyde 3-phosphate contributes to driving the reaction forward. (d) The cysteine side chain on the enzyme is oxidized by NAD+.

B (The delta G for the oxidation of the aldehyde group on glyceraldehyde 3-phosphate to form a carboxylic acid is more negative than the delta G for ATP hydrolysis

Several different classes of enzymes are needed for the catabolism of carbohydrates. Which of the following descriptions best matches the function of a mutase? (a) An enzyme that catalyzes the rearrangement of bonds within a single molecule. (b) An enzyme that catalyzes a change in the position of a specific chemical group within a single molecule. (c) An enzyme that catalyzes the oxidation of a molecule by removing a hydride ion. (d) An enzyme that catalyzes the addition of phosphate groups to other molecules.

B (an enzyme that catalyzes a change in the position of a specific chemical group within a single molecule)

The oxygen-dependent reactions required for cellular respiration were originally thought to occur in a linear pathway. By using a competitive inhibitor for one enzyme in the pathway, investigators discovered that these reactions occur in a cycle. Which product in the reaction pathway builds up when the inhibitor is added? (a) citrate (b) succinate (c) fumarate (d) malate

B (auxxinRW)

Step 6 of the citric acid cycle is catalyzed by succinate dehydrogenase. Keeping in mind that dehydrogenases catalyze redox reactions, which are the products of the reaction in which succinate is oxidized? (a) fumarate, NADH (b) fumarate, FADH2 (c) fumarate, FADH2 (d) succinyl CoA, NADH

B (fumarate, FADH2)

Which of the following polymers of glucose is used as a vehicle to store energy reserves in animal cells? (a) glucagon (b) glycogen (c) starch (d) glycerol

B (glycogen)

The concentration of H+ ions inside the mitochondrial matrix is lower than it is in the cytosol or the mitochondrial intermembrane space. What would be the immediate effect of a membrane-permeable compound that carries and releases protons into the mitochondrial matrix? (a) inhibition of the electron-transport chain (b) inhibition of ATP synthesis (c) increased import of ADP into the matrix (d) inhibition of the citric acid cycle

B (inhibition of ATP synthesis)

In humans, glycogen is a more useful food-storage molecule than fat because _____________________. (a) a gram of glycogen produces more energy than a gram of fat. (b) it can be utilized to produce ATP under anaerobic conditions, whereas fat cannot. (c) it binds water and is therefore useful in keeping the body hydrated. (d) for the same amount of energy storage, glycogen occupies less space in a cell than does fat.

B (it can be utilized to produce ATP under anaerobic conditions, whereas fat cannot)

The simultaneous oxidation and phosphorylation of glyceraldehyde 3-phosphate forms a highly reactive covalent thioester bond between a cysteine side chain (reactive group -SH) on the enzyme (glyceraldehyde 3-phosphate dehydrogenase) and the oxidized intermediate (see arrow in Figure Q13-31A). If the enzyme had a serine (reactive group -OH) instead of a cysteine at this position, which could form only a much-lower-energy bond to the oxidized substrate (see arrow in Figure Q13-31B), how might this new enzyme act? Figure Q13-31 (a) It would oxidize the substrate and phosphorylate it without releasing it. (b) It would oxidize the substrate but not release it. (c) It would phosphorylate the substrate on the 2 position instead of the 1 position. (d) It would behave just like the normal enzyme.

B (it would oxidize the substrate but not release it)

The final metabolite produced by glycolysis is ___________. (a) acetyl CoA. (b) pyruvate. (c) 3-phosphoglycerate. (d) glyceraldehyde 3-phosphate.

B (pyruvate)

Steps 7 and 10 of glycolysis result in substrate-level phosphorylation. Which of the following best describes this process? (a) ATP is being hydrolyzed to phosphorylate the substrate. (b) The energy derived from substrate oxidation is coupled to the conversion of ADP to ATP. (c) Two successive phosphates are transferred, first to AMP, then to ADP, finally forming ATP. (d) The substrate is hydrolyzed using ATP as an energy source.

B (the energy derived from substrate oxidation is coupled to the conversion of ADP to ATP)

Glycolysis generates more stored energy than it expends. What is the net number of activated carrier molecules produced in this process (number and type of molecules produced minus the number of those molecules used as input)? (a) 6 ATP, 2 NADH (b) 4 ATP, 4 NADH (c) 2 ATP, 2 NADH (d) 4 ATP, 2 NADH

C (2 ATP, 2 NADH)

In step 4 of the citric acid cycle, the reduction of NAD+ to NADH is coupled to the generation of CO2 and the formation of a high-energy thioester bond. Which molecule provides the sulfhydryl group necessary to form the thioester bond? (a) pyruvate (b) acetyl CoA (c) CoA (d) cysteine side chain in the catalytic pocket

C (CoA)

Glyceraldehyde 3-phosphate dehydrogenase operates by stripping a hydride ion from its substrate. Which molecule is the recipient of the proton and two electrons during this transfer? (a) oxygen (b) acetyl CoA (c) NAD+ (d) FADH

C (NAD+)

In step 1 of the citric acid cycle, citrate is generated by the enzyme citrate synthase. The enzyme combines the two-carbon acetyl group from acetyl CoA and the four-carbon oxaloacetate. What is the source of energy that drives this reaction forward? (a) a high-energy phosphodiester bond (b) a transfer of high-energy electrons (c) a high-energy thioester bond (d) the heat of molecular collision

C (a high-energy thioester bond)

Several different classes of enzymes are needed for the catabolism of carbohydrates. Which of the following descriptions best matches the function of a dehydrogenase? (a) An enzyme that catalyzes the rearrangement of bonds within a single molecule. (b) An enzyme that catalyzes a change in the position of a specific chemical group within a single molecule. (c) An enzyme that catalyzes the oxidation of a molecule by removing a hydride ion. (d) An enzyme that catalyzes the addition of phosphate groups to other molecules.

C (an enzyme that catalyzes the oxidation of a molecule by removing a hydride ion)

Pyruvate is an important metabolic intermediate that can be converted into several other compounds, depending on which enzyme is catalyzing the reaction. Which of the following cannot be produced from pyruvate in a single enzyme-catalyzed reaction? (a) lactate (b) oxaloacetate (c) citrate (d) alanine

C (citrate)

Which of the following steps or processes in aerobic respiration include the production of carbon dioxide? (a) breakdown of glycogen (b) glycolysis (c) conversion of pyruvate to acetyl CoA (d) oxidative phosphorylation

C (conversion of pyruvate to acetyl CoA)

The advantage to the cell of the gradual oxidation of glucose during cellular respiration compared with its combustion to CO2 and H2O in a single step is that ________________. (a) more free energy is released for a given amount of glucose oxidized. (b) no energy is lost as heat. (c) energy can be extracted in usable amounts. (d) more CO2 is produced for a given amount of glucose oxidized.

C (energy can be extracted in usable amounts)

The intermediates of the citric acid cycle are constantly being depleted because they are used to produce many of the amino acids needed to make proteins. The enzyme pyruvate carboxylase converts pyruvate to oxaloacetate to replenish these intermediates. Bacteria, but not animal cells, have additional enzymes that can carry out the reaction acetyl CoA + isocitrate à oxaloacetate + succinate. Which of the following compounds will not support the growth of animal cells when used as the major source of carbon in food, but will support the growth of nonphotosynthetic bacteria? (a) pyruvate (b) glucose (c) fatty acids (d) fructose

C (fatty acids)

Which reaction does the enzyme phosphoglucose isomerase catalyze? (a) glucose à glucose 6-phosphate (b) fructose 6-phosphate à fructose 1,6-bisphosphate (c) glucose 6-phosphate à fructose 6-phosphate (d) glucose à glucose 1-phosphate

C (glucose 6-phosphate a fructose 6-phosphate)

In anaerobic conditions, skeletal muscle produces _____________. (a) lactate and CO2. (b) ethanol and CO2. (c) lactate only. (d) ethanol only.

C (lactate only)

The reaction cycle that uses acetyl CoA to generate electron carrier molecules needed in the electron-transport chain is important for powering the cell. Which of the names below is not one of those commonly used to describe this reaction cycle? (a) tricarboxylic acid cycle (b) Krebs cycle (c) oxaloacetic acid cycle (d) citric acid cycle

C (oxaloacetic acid cycle)

Pyruvate must move from the cytosol into the mitochondria, where it is oxidized to form CO2 and acetyl CoA by the pyruvate dehydrogenase complex. How many different enzymes and what total number of polypeptides, respectively, are required to perform this oxidation process in the mitochondrion? (a) 1; 60 (b) 3; 3 (c) 3; 26 (d) 3; 60

D (3; 60)

The citric acid cycle is a series of oxidation reactions that removes carbon atoms from substrates in the form of CO2. Once a molecule of acetyl CoA enters the citric acid cycle, how many complete cycles are required for both of the carbon atoms in its acetyl groupto be oxidized to CO2? (a) 1 (b) 2 (c) 3 (d) 4

D (4)

In step 3 of the citric acid cycle, the oxidation of isocitrate and the production of CO2 are coupled to the reduction of NAD+, generating NADH and an α-ketoglutarate molecule. In the isocitrate molecule shown in Figure Q13-47, which carbon is lost as CO2 and which is converted to a carbonyl carbon? (a) 4 and 6 (b) 6 and 5 (c) 5 and 4 (d) 6 and 4

D (6 and 4)

Step 3 in glycolysis requires the activity of phosphofructokinase to convert fructose 6-phosphate into fructose 1,6-bisphosphate. Which of the following molecules is an allosteric inhibitor of this enzyme? (a) Pi (b) AMP (c) ADP (d) ATP

D (ATP)

The conversion of fructose 1,6-bisphosphate to fructose 6-phosphate is catalyzed by a fructose 1,6-bisphosphatase and is one of the final steps in gluconeogenesis. Which of the following molecules is an allosteric activator of this enzyme? (a) Pi (b) AMP (c) ADP (d) ATP

D (ATP)

Pyruvate can be converted into many other molecules by various biosynthetic and metabolic pathways, which makes it a central hub in the regulation of cellular metabolism. Which of the following molecules is not made from pyruvate? (a) oxaloacetate (b) ethanol (c) lactate (d) NADH

D (NADH)

Several different classes of enzymes are needed for the catabolism of carbohydrates. Which of the following descriptions best matches the function of a kinase? (a) An enzyme that catalyzes the rearrangement of bonds within a single molecule. (b) An enzyme that catalyzes a change in the position of a specific chemical group within a single molecule. (c) An enzyme that catalyzes the oxidation of a molecule by removing a hydride ion. (d) An enzyme that catalyzes the addition of phosphate groups to other molecules.

D (an enzyme that catalyzes the oxidation of phosphate groups to other molecules)

On a diet consisting of nothing but protein, which of the following is the most likely outcome? (a) loss of weight because amino acids cannot be used for the synthesis of fat (b) muscle gain because the amino acids will go directly into building muscle (c) tiredness because amino acids cannot be used to generate energy (d) excretion of more nitrogenous (ammonia-derived) wastes than with a more balanced diet

D (excretion of more nitrogenous (ammonia-derived) wastes than with a more balanced diet)

Which of the following processes do not take place in the mitochondria? (a) citric acid cycle (b) conversion of pyruvate to activated acetyl groups (c) oxidation of fatty acids to acetyl CoA (d) glycogen breakdown

D (glycogen breakdown)

Which of the following stages in the breakdown of the piece of toast you had for breakfast generates the most ATP? (a) the digestion of starch to glucose (b) glycolysis (c) the citric acid cycle (d) oxidative phosphorylation

D (oxidative phosphorylation)

The oxygen-dependent reactions required for cellular respiration were originally thought to occur in a linear pathway. By using a competitive inhibitor for one enzyme in the pathway, investigators discovered that these reactions occur in a cycle. Which enzyme was inhibited? (a) aconitase (b) isocitrate dehydrogenase (c) malate dehydrogenase (d) succinate dehydrogenase

D (succinate dehydrogenase)

In step 2 of the citric acid cycle, the enzyme aconitase generates isocitrate from citrate. Which of the following statements about this reaction is true? (a) There is a substantial free-energy difference between the reactants and products of this reaction. (b) The unbonded electrons from hydroxide ions provide energy for this reaction. (c) The aconitase enzyme functions as a mutase in this reaction. (d) The reaction sequence first generates one molecule of water and then consumes one molecule of water.

D (the reaction sequence first generates one molecule of water and then consumes one molecule of water)

True or False; Activated carrier molecules store heat energy for the cell to use later

False (Activated carriers have high-energy bonds that can drive other reactions when broken. Heat may be released during these reactions and may increase the reaction rates, but is not a form of energy that is stored in biological systems.)

True or False; The proteins of the electron-transport chain remove a pair of high-energy electrons from the cofactors NADH and FADH2, after which the electrons move across the inner mitochondrial membrane to maintain the voltage gradient.

False (Although the proteins of the electron-transport chain collect electrons from the NADH and FADH2 cofactors, these high-energy electrons go through a series of transfers along the electron-transport chain. The energy released with each transfer moves protons across the inner mitochondrial membrane. It is this proton gradient that provides the energy to synthesize ATP)

True or False; During glycolysis, glucose molecules are broken down to yield CO2 and H2O

False (At the end of a series of the 10 different reactions involved in glycolysis, the final products are two molecules of pyruvate. Pyruvate will later be broken down into CO2 and H2O in the citric acid cycle.)

True or False; Catabolism is a general term that refers to the processes by which large molecules are synthesized from smaller molecules.

False (Catabolism comprises the metabolic reactions that are involved in breaking large molecules into smaller molecules. Anabolism encompasses the reverse types of reactions: synthesizing larger molecules from smaller molecules.)

True or False; Gluconeogenesis is a linear reaction pathway that the cell employs to generate glucose from pyruvate and is exactly the reverse of the reactions in the glycolytic pathway.

False (Gluconeogenesis can begin with pyruvate as a building block to make glucose, but there are three reactions in glycolysis that are irreversible because of a large free-energy barrier. Alternative enzymes and reaction pathways are used to bypass this problem, and they require the input of energy in the form of ATP and GTP.)

True or False; When subjected to anaerobic conditions, glycolysis in mammalian cells continues and causes a buildup of pyruvate in the cytosol.

False (Under anaerobic conditions, mammalian cells convert pyruvate to lactate in a fermentation process. The lactate is subsequently excreted from the cell.)

True or False; The cleavage of fructose 1,6-bisphosphate yields two molecules of glyceraldehyde 3-phosphate.

False (When fructose 1,6-bisphosphate is cleaved, the products are dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. Only after the subsequent isomerization of dihydroxyacetone phosphate is the second molecule of glyceraldehyde 3-phosphate produced)

True or False; Glycogen phosphorylase cleaves glucose monomers from the glycogen polymer, phosphorylating them at the same time so that they can be fed unchanged into the glycolytic pathway.

False (When glycogen phosphorylase cleaves a glucose monomer from glycogen, the product is glucose 1-phosphate. Before it can be used in glycolysis, it needs to be isomerized to glucose 6-phosphate.)

You then eat a corn chip made from the corn seed. You digest the corn seed, and the free __________________ travels in your bloodstream, eventually being taken up by a liver cell and stored as __________________.

Glucose; glycogen

It requires an electron-transport chain that operates on the high-energy electrons taken from the activated carrier molecules __________________ and __________________ that are produced by glycolysis and the citric acid cycle.

NADH; FADH

Thus, oxidative phosphorylation refers to the oxidation of __________________ and __________________ molecules and the phosphorylation of __________________. Without this process, the yield of ATP from each glucose molecule would be __________________ decreased.

NADH; FADH2; ADP; Severely

A carbon atom in a CO2 molecule in the atmosphere eventually becomes a part of one of the enzymes that catalyzes glycolysis in one of your cells. The CO2 first enters a cell in a corn leaf, where photosynthesis fixes the carbon to make it part of a sugar molecule; this travels from the leaf to an ear of corn, where it is stored as part of a polysaccharide __________________ molecule in the corn seed.

Starch

True or False; Amino acids can be transported into the mitochondria and converted into acetyl CoA.

True

True or False; Anaerobic respiration is not the same as fermentation, as only the former requires an electron-transport chain.

True

True or False; CO2 and H2O are generated during the oxidation of food molecules.

True

True or False; The oxidation of sugar is an energetically favorable process.

True

True or False; The pyruvate dehydrogenase complex catalyzes three different, but linked, enzymatic reactions.

True

True or False; With respect to the amount of energy stored in molecules of the body, 6 g of glycogen is the equivalent of 1 g of fat

True

Several intermediates in this process can provide the carbon skeleton for the production of __________________, which are then incorporated into the enzymes that catalyze steps in glycolysis.

amino acids

Because their concentration is much __________________ outside than inside the mitochondria, the flow of __________________, or __________________, down the concentration gradient is energetically very __________________ and can thus be coupled to the production of ATP from ADP.

higher; protons; H+; favorable

Oxidative phosphorylation is a process that occurs in the __________________ of mitochondria.

inner membrane

These electrons are transferred through a series of molecules, and the energy released during these transfers is used to generate a gradient of __________________, or __________________.

protons; H+

Glycolysis produces __________________, which is converted into acetyl CoA, which enters the __________________.

pyruvate; citric acid cycle


Related study sets

MKTG Unit 3 Practice Questions, Retail Q's Exam 3, RETAIL EXAM #3

View Set

Physical Science Chapter 12 part 2

View Set

Chapter 16-Inside the Computer Transistors and Integrated Circuits

View Set