CHEMISTRY A2 EQUATIONS

¡Supera tus tareas y exámenes ahora con Quizwiz!

nucleophillic substitution with aqueous AgNO3

(CH₃)₂CHBr + H₂O -->(CH₃)₂CHOH +H⁺(aq) + Br⁻(aq) dissolved in ethanol

nucleophillic substitution with KCN in ethanolic solution

(CH₃)₂CHBr + KCN -->(CH₃)₂CHCN+K⁺(aq) + Br⁻(aq) HEAT UNDER REFLUX product called propanenitrile

nucelophillic substitution with ammonia

(CH₃)₂CHBr + NH₃ -->(CH₃)₂CHNH₂ +NH₄⁺(aq) + Br⁻(aq) CONCENTRATED AMMONIA sealed tube, Heat product called ethyl amine

reduction of a carboxylic acid

(nucleophilic addition) lithium aluminium hydride in dry ether

grignard reagent + carbonyl compounds

1. carbonyl compound + grignard reagent 2.then dilute acid

acylation of amines

1.RCOCl + R'NH₂ → HCl + RCONHR' R'NH₂ + HCl → R'NH₃⁺Cl⁻ violent reaction concentrated aqueous solution of amine produces solid white mixture of products

phenol + bromine water

2,4,6-tribromophenol - insoluble in water and ppt out of the mixture. smells of antiseptic. orange colour decolorizes.

tollens reagent with aldehyde + heat

2Ag(NH₃)₂(aq) + RCHO(aq) + 3OH-(aq) →2Ag(s) + RCOO⁻(aq) + 4NH₃ + 2H₂0 colourless →silver mirror (use water bath no flame)

catalytic converters using platinum rubidium rhodium

2CO + 2NO --> 2CO2 + N2

group 2 nitrates

2Ca(NO₃)₂ → 2CaO(s) + 4NO₂(g) + O₂(g)

Equilibrium +6 Cr

2CrO₄²⁻(aq) + 2H⁺(aq) ⇌ Cr₂O₇²⁻ (aq) + H₂O(aq) add acid to chromate to form dichromate yellow → orange

oxidation of Cr3+

2Cr³⁺(aq) + 10OH⁻(aq) + 3H₂O₂(aq) → 2CrO₄⁻(aq) + 8H₂O(l) + alkaline conditions

Reduction of Cr3+

2Cr³⁺(aq) + Zn(s) → Zn²⁺(aq) + 2Cr²⁺(aq) inert atomsphere Cr²+ is so unstable that it oxidises straight back to to Cr³+

combustion of benzene

2C₆H₆ + 15O₂ → 12CO₂ + 6H₂O smoky flame due to high c:h atoms

group 1 nitrates

2KNO₃(s) → 2KNO₂(s) + O₂(g) except lithium 4LiNO₃ → Li₂O + 4NO₂ + O₂

chlorine reaction with cold sodium hydroxide (aq)

2NaOH(aq) + Cl₂(aq) --> NaClO(aq) + NaCl(aq) + H₂O(l)

Iodoalkanes

3C₃H₇OH + PI₃ ---> 3C₃H₇I +H₃PO₃ RTP red phosphorous

chlorine reaction with hot sodium hydroxide (aq)

6NaOH(aq) + 3Cl₂(aq) --> NaClO₃(aq) + 5NaCl(aq) + 3H₂O(l)

catalytic reformation

C6H14 ---> C6H6 + 4H₂ Pt 500 degrees High pressure

complete combustion

CH4 + 2O2 → 2H2O + CO2

oxidation of Potassium Manganate VII of an alkene

CH₂=CH₂ + H₂O + MnO4⁻ ---> CH₂(OH)CH₂OH ethane-1,2- diol purple to colourless

aqueous alkaline nucleophillic substitution reagent NaOH or KOH

CH₃CH₂Br + NaOH(aq) --> CH₃CH₂OH + NaBr(aq) heat under reflux in aqueous solution

ELIMINATION of haloalkanes

CH₃CH₂BrCH₃ + NaOH(ethanol) --> CH₃CH=CH₂ + NaBr(aq) + H₂O heat under reflux with conc solution of NaOH in ethanol

neutralisation of amines

CH₃CH₂NH₂ + HCl → CH₃CH₂NH₃⁺Cl⁻ forms ethylammonium chloride (ammonium salt)

amines dissolve in water

CH₃CH₂NH₂ + H₂O → CH₃CH₂NH₃⁺ + OH⁻ FORMS ALKALINE SOLUTION

hydrolysis of a nitrile

CH₃CN + 2H₂O + HCl → CH₃COOH + NH₄Cl reflux with dilute hydrochloric acid

iodination of propanone

CH₃COCH₃(aq) + I₂(aq) → CH₃COCH₂I(aq) + H⁺(aq) + I⁻(aq) You can monitor the reaction by adding NaHCO₃ at regular intervals and titrating this with sodium thiosulphate to work out concentration

acyl chloride + amines RTP

CH₃COCl + CH₃NH₂ → CH₃CNHCH₃ + HCl Violent reaction producing N- amide

acyl chloride + alcohol RTP

CH₃COCl + CH₃OH → CH₃COOCH3 + HCl vigorous reaction MISTY FUMES GIVEN OFF

acyl chloride + water

CH₃COCl + H₂O → CH₃COOH + HCl vigorous reaction with cold water MISTY FUMES GIVEN OFF

acyl chloride + concentrated ammonia RTP

CH₃COCl + NH₃ → CH₃CONH₂ + HCl violent reaction produces and amide

group 2 carbonates

CaCO₃(s) → CaO(s) + CO₂(g)

disproportionation of chlorine with water

Cl₂ (g)+ H₂O(l) --> HCl(aq) + HClO(aq)

aldehyde with acidified dichromate

Cr₂O₇²⁻ + 14H⁺ +6e⁻ → 2Cr³⁺ + 7H₂O orange →green

reduction of dichromate

Cr₂O₇²⁻(aq) + 14H⁺(aq) + 3Zn(s) → 3Zn²⁺(aq) + 2Cr³⁺(aq) + 7H₂O(l) zinc + dilute acid orange → green

Copper(II) +ammonia

Cu(H₂O)₆]²⁺(aq) + 2NH₃(aq) →[Cu(OH)₂(H₂O)₄](s) + 2NH₄⁺(aq) pale blue →blue ppt

Hydrogenation

C₂H₄ + H₂ --> C₂H₆(g) 150°C finely divided nickel catalyst making magerine and fats

alcohols made from steam

C₂H₄ + H₂O → CH₃CH₂OH (phosphoric acid catalyst and H₂O is steam ) 60 atm 300°C

how to make chloroalkanes by substitution

C₃H₇OH(l) + PCl₅(l) --> C₃H₇Cl(l) + POCl₃(l) + HCl(g) RTP

reducing a nitro compound

C₆H₅NO₂ + 6[H] → C₆H₅NH₂ + 2H₂O tin metal conc HCl reflux add naoah to get aromatic amine

benzene + bromine electrophilic substitution

C₆H₆ + Br₂ → C₆H₅Br + HBr room temperature halogen carrier (AlCl₃ or FeBr₃ or Fe)

Friedel-Crafts Alkylation

C₆H₆ + R-X → C₆H₅R + HX AlCl₃ catalyst

Friedel-Crafts Acylation

C₆H₆ + RCOCl → C₆H₅COR + HCl AlCl₃ catalyst

nitration of benzene

HNO₃ + H₂SO₄ → H₂NO₃⁺ + HSO₄⁻ H₂NO₃⁺ → NO₂⁺ + H₂O warm benzene with conc nitric acid and conc sulphuric acid catalyst mononitration <55⁰C polynitration >55⁰C

Hydrogen halides with water

HX(aq) + H₂O (l) --> H₃O⁺ + X⁻

iodine clock reaction

H₂O₂(aq) + 2I⁻(aq) + 2H⁺(aq) → 2H₂O(l) + I₂(aq) 2S₂O₃²⁻(aq) + I₂(aq) → S₄O₆²⁻(aq) + 2I⁻(aq) starch as indicator when thiosulphate is used up

Bromoalkanes

H₂SO₄(50% conc) + KBr --> HBr + KHSO₄ HBr +C₃H₇OH(l) --> C₃H₇Br(l) + H₂O

reduction of an aldehyde

LialH₄ in dry ether acts as a reducing agent

Magnesium with steam

Mg(s) + H₂0 ---> MgO + H₂

Magnesium with cold water

Mg(s) + H₂O ---> Mg(OH)2 + H₂

Hydrogen halides with ammonia

NH₃(g) + HCL(g) --> NH₄Cl (s)

bromide with sulphuric acid

NaBr(s) + H2SO4(l) ==> NaHSO4(s) + HBr(g) 2HBr(g) + H2SO4(l) ==> Br2(g) + SO2(g) + 2H2O(l)

chloride with sulphuric acid

NaCl + H2SO4 --> NaHSO4 + HCl

iodide with sulphuric acid

NaI(s) + H2SO4(l) ==> NaHSO4(s) + HI(g) 2HI(g) + H2SO4(l) ==> I2(g) + SO2(g) + 2H2O(l) 6HI(g) + SO2 ==> 3I2(g/s) + H2S(g) + 2H2O(l)

grignard reagent + CO2

R-MgBr + O=C=O → RCOOH +MgBrCl bubble CO₂ through grignard reagent in dry ether 2. add dilute acid eg HCl

production of grignard reagents

R-X → RMgX refluxing a halogenoalkane with magnesium in dry ether

fehlings solution with aldehyde + heat

RCHO(aq) + 2Cu²⁺ + 5OH⁻→RCOO⁻(aq) + Cu₂O(s) + 3H₂O(l) Blue→brick red ppt

carboxylic acid + phosphorous (V) chloride

RCOOH + PCl₅ → RCOCl + POCl₃ + HCl you get an acyl chloride

chlorination of alchols

ROH + HCl → RCl + H₂O fastest for tertiary rather than primary

chromium(III) ions + ammonia `

[Cr(H₂O)₆]³⁺(aq) + 3NH₃(aq) → [Cr(OH)₃(H₂O)₃](s) + 3NH₄⁺(aq) green → grey-green ppt

chromium(III) ions + NaOH

[Cr(H₂O)₆]³⁺(aq) + 3OH⁻(aq) → [Cr(OH)₃(H₂O)₃](s) + 3H₂O(l) green → grey-green ppt

chromium hydroxide ppt +excess ammonia

[Cr(OH)₃(H₂O)₃](s) + 6NH₃(aq) → [Cr(NH₃)₆](aq) + 3OH⁻(aq) + 3H₂O(l) ligand exchange reaction grey-green ppt → purple solution

chromium hydroxide ppt + excess NaOH

[Cr(OH)₃(H₂O)₃](s)+ 3OH⁻(aq) → [Cr(OH)₆]³⁻(aq) + 3H₂O(l) grey-green ppt → dark green solution H₂O ligands deprotonate

amines + copper ions

[Cu(H₂O)₆]²⁺ → [Cu(OH)₂(H₂O)₄] → [Cu(CH₃(CH₂)₃NH₂)₄(H₂O)₂]²⁺ addition of butylamine 1. pale blue ppt 2.deep blue solution

Copper(II) +NaOH

[Cu(H₂O)₆]²⁺(aq) + 2OH⁻(aq) →[Cu(OH)₂(H₂O)₄](s) + 2H₂O pale blue →blue ppt

Copper(II) +excess ammonia

[Cu(OH)₂(H₂O)₄](s) + 4NH₃(aq) → [Cu(NH₃)₄(H₂O)₄](s) +4H₂O + 2OH- ligand exchange blue ppt → deep blue solution

Iron (II) + Ammonia

[Fe(H₂O)₆]²⁺(aq) + 2NH₃(aq) → [Fe(OH)₂(H₂O)₄](s) + 2NH₄⁺(aq) pale green → green ppt(darkens on standing)

iron (II) + NaOH

[Fe(H₂O)₆]²⁺(aq) + 2OH⁻(aq) → [Fe(OH)₂(H₂O)₄](s) + 2H₂O(l) pale green → green ppt(darkens on standing)

test for tertiary alcohols

acidified potassium dichromate no change

test for primary alcohols

acidified potassium dichromate turns green from orange +H₂O

test for secondary alcohols

acidified potassium dichromate turns green from orange +H₂O

fuel cell in alkaline coniditions

anode = 2H₂ + 4OH⁻ → 4H₂O + 4e⁻ cathode = O₂ + 2H₂O + 4e⁻ --> 4OH-

fuel cell in acidic conditions

anode = H₂ → 2H⁺ + 2e⁻ cathode= ¹/₂O₂ + 2H⁺ + 2e⁻ →H2O

dehydrating agents

cacl2 MgSO₄

2,4-dinitrophnylhydrazine +dissolved in methanol and concentrated sulphuric acid

forms a bright orange ppt with carbonyl compounds

esterification (condensation)

heat with an concentrated acid catalyst reversible reaction therefore distill asap product mixed with NaCO₃ to react with carboxylic acid.

h3c-c-0 iodoform and methyl carbonyl

heat with iodine in presence of alkali RCOCH₃ + 3I₂ + 4OH⁻ → RCOO⁻ + CHI₃ + 3I⁻ + 3H₂Oi Yellow ppt antiseptic smell

catalytic hydrogenation of nitriles

high temperature high pressure metal catalyst Pt or Ni hydrogen gas

hydrolysis of polypeptides

hot aqueous 6 mol dm⁻³ HCl heated under reflux for 24 hours final mixture neutralised with a base

incomplete combustion

hydrocarbon + oxygen → carbon monoxide + (carbon) + water + (carbon dioxide)

amines + halogenoalkanes

like the ammonia as nitrogen has lone pair

OAlCl3- friedel-crafts

makes alcohols

hydrogen cyanide + carbonyl

nucleophilic addition (acidified potassium cyanide as HCN is toxic)

amino acid polymerisation

peptide link formed polypetide = protien

elimination alcohols can be dehydrated

phosphoric acid used

dicarboxylic acids + diamines

polyamide

catalytic cracking

produces alot fo aromatic compounds using a zeoltlite catalyst (hydrated aluminosilicate) at aslight pressure and high temperature of 450°C

thermal cracking

takes place at high temperatures and high pressure. (up to 1000°C 70 atm) this proudces alot of alkenes

group 1 carbonates

thermally stable except lithium Li₂CO₃(s) → Li₂O(s) +CO₂(g)

reduction of a nitrile

use LiAlH₄ in dry ether followed by dilute acid

acid hydrolysis of ester

use alot of dilute acid this is reversible

base hydrolysis of ester

use dilute alkali


Conjuntos de estudio relacionados

Mod 05: Cloud Connectivity and Troubleshooting

View Set

English Trimester 2 Final Exam!!!

View Set

4.36 Mechanoreceptors and Chemoreceptors

View Set

Bronislaw Malinowski "Off the Verandah"

View Set