CHEMISTRY A2 EQUATIONS
nucleophillic substitution with aqueous AgNO3
(CH₃)₂CHBr + H₂O -->(CH₃)₂CHOH +H⁺(aq) + Br⁻(aq) dissolved in ethanol
nucleophillic substitution with KCN in ethanolic solution
(CH₃)₂CHBr + KCN -->(CH₃)₂CHCN+K⁺(aq) + Br⁻(aq) HEAT UNDER REFLUX product called propanenitrile
nucelophillic substitution with ammonia
(CH₃)₂CHBr + NH₃ -->(CH₃)₂CHNH₂ +NH₄⁺(aq) + Br⁻(aq) CONCENTRATED AMMONIA sealed tube, Heat product called ethyl amine
reduction of a carboxylic acid
(nucleophilic addition) lithium aluminium hydride in dry ether
grignard reagent + carbonyl compounds
1. carbonyl compound + grignard reagent 2.then dilute acid
acylation of amines
1.RCOCl + R'NH₂ → HCl + RCONHR' R'NH₂ + HCl → R'NH₃⁺Cl⁻ violent reaction concentrated aqueous solution of amine produces solid white mixture of products
phenol + bromine water
2,4,6-tribromophenol - insoluble in water and ppt out of the mixture. smells of antiseptic. orange colour decolorizes.
tollens reagent with aldehyde + heat
2Ag(NH₃)₂(aq) + RCHO(aq) + 3OH-(aq) →2Ag(s) + RCOO⁻(aq) + 4NH₃ + 2H₂0 colourless →silver mirror (use water bath no flame)
catalytic converters using platinum rubidium rhodium
2CO + 2NO --> 2CO2 + N2
group 2 nitrates
2Ca(NO₃)₂ → 2CaO(s) + 4NO₂(g) + O₂(g)
Equilibrium +6 Cr
2CrO₄²⁻(aq) + 2H⁺(aq) ⇌ Cr₂O₇²⁻ (aq) + H₂O(aq) add acid to chromate to form dichromate yellow → orange
oxidation of Cr3+
2Cr³⁺(aq) + 10OH⁻(aq) + 3H₂O₂(aq) → 2CrO₄⁻(aq) + 8H₂O(l) + alkaline conditions
Reduction of Cr3+
2Cr³⁺(aq) + Zn(s) → Zn²⁺(aq) + 2Cr²⁺(aq) inert atomsphere Cr²+ is so unstable that it oxidises straight back to to Cr³+
combustion of benzene
2C₆H₆ + 15O₂ → 12CO₂ + 6H₂O smoky flame due to high c:h atoms
group 1 nitrates
2KNO₃(s) → 2KNO₂(s) + O₂(g) except lithium 4LiNO₃ → Li₂O + 4NO₂ + O₂
chlorine reaction with cold sodium hydroxide (aq)
2NaOH(aq) + Cl₂(aq) --> NaClO(aq) + NaCl(aq) + H₂O(l)
Iodoalkanes
3C₃H₇OH + PI₃ ---> 3C₃H₇I +H₃PO₃ RTP red phosphorous
chlorine reaction with hot sodium hydroxide (aq)
6NaOH(aq) + 3Cl₂(aq) --> NaClO₃(aq) + 5NaCl(aq) + 3H₂O(l)
catalytic reformation
C6H14 ---> C6H6 + 4H₂ Pt 500 degrees High pressure
complete combustion
CH4 + 2O2 → 2H2O + CO2
oxidation of Potassium Manganate VII of an alkene
CH₂=CH₂ + H₂O + MnO4⁻ ---> CH₂(OH)CH₂OH ethane-1,2- diol purple to colourless
aqueous alkaline nucleophillic substitution reagent NaOH or KOH
CH₃CH₂Br + NaOH(aq) --> CH₃CH₂OH + NaBr(aq) heat under reflux in aqueous solution
ELIMINATION of haloalkanes
CH₃CH₂BrCH₃ + NaOH(ethanol) --> CH₃CH=CH₂ + NaBr(aq) + H₂O heat under reflux with conc solution of NaOH in ethanol
neutralisation of amines
CH₃CH₂NH₂ + HCl → CH₃CH₂NH₃⁺Cl⁻ forms ethylammonium chloride (ammonium salt)
amines dissolve in water
CH₃CH₂NH₂ + H₂O → CH₃CH₂NH₃⁺ + OH⁻ FORMS ALKALINE SOLUTION
hydrolysis of a nitrile
CH₃CN + 2H₂O + HCl → CH₃COOH + NH₄Cl reflux with dilute hydrochloric acid
iodination of propanone
CH₃COCH₃(aq) + I₂(aq) → CH₃COCH₂I(aq) + H⁺(aq) + I⁻(aq) You can monitor the reaction by adding NaHCO₃ at regular intervals and titrating this with sodium thiosulphate to work out concentration
acyl chloride + amines RTP
CH₃COCl + CH₃NH₂ → CH₃CNHCH₃ + HCl Violent reaction producing N- amide
acyl chloride + alcohol RTP
CH₃COCl + CH₃OH → CH₃COOCH3 + HCl vigorous reaction MISTY FUMES GIVEN OFF
acyl chloride + water
CH₃COCl + H₂O → CH₃COOH + HCl vigorous reaction with cold water MISTY FUMES GIVEN OFF
acyl chloride + concentrated ammonia RTP
CH₃COCl + NH₃ → CH₃CONH₂ + HCl violent reaction produces and amide
group 2 carbonates
CaCO₃(s) → CaO(s) + CO₂(g)
disproportionation of chlorine with water
Cl₂ (g)+ H₂O(l) --> HCl(aq) + HClO(aq)
aldehyde with acidified dichromate
Cr₂O₇²⁻ + 14H⁺ +6e⁻ → 2Cr³⁺ + 7H₂O orange →green
reduction of dichromate
Cr₂O₇²⁻(aq) + 14H⁺(aq) + 3Zn(s) → 3Zn²⁺(aq) + 2Cr³⁺(aq) + 7H₂O(l) zinc + dilute acid orange → green
Copper(II) +ammonia
Cu(H₂O)₆]²⁺(aq) + 2NH₃(aq) →[Cu(OH)₂(H₂O)₄](s) + 2NH₄⁺(aq) pale blue →blue ppt
Hydrogenation
C₂H₄ + H₂ --> C₂H₆(g) 150°C finely divided nickel catalyst making magerine and fats
alcohols made from steam
C₂H₄ + H₂O → CH₃CH₂OH (phosphoric acid catalyst and H₂O is steam ) 60 atm 300°C
how to make chloroalkanes by substitution
C₃H₇OH(l) + PCl₅(l) --> C₃H₇Cl(l) + POCl₃(l) + HCl(g) RTP
reducing a nitro compound
C₆H₅NO₂ + 6[H] → C₆H₅NH₂ + 2H₂O tin metal conc HCl reflux add naoah to get aromatic amine
benzene + bromine electrophilic substitution
C₆H₆ + Br₂ → C₆H₅Br + HBr room temperature halogen carrier (AlCl₃ or FeBr₃ or Fe)
Friedel-Crafts Alkylation
C₆H₆ + R-X → C₆H₅R + HX AlCl₃ catalyst
Friedel-Crafts Acylation
C₆H₆ + RCOCl → C₆H₅COR + HCl AlCl₃ catalyst
nitration of benzene
HNO₃ + H₂SO₄ → H₂NO₃⁺ + HSO₄⁻ H₂NO₃⁺ → NO₂⁺ + H₂O warm benzene with conc nitric acid and conc sulphuric acid catalyst mononitration <55⁰C polynitration >55⁰C
Hydrogen halides with water
HX(aq) + H₂O (l) --> H₃O⁺ + X⁻
iodine clock reaction
H₂O₂(aq) + 2I⁻(aq) + 2H⁺(aq) → 2H₂O(l) + I₂(aq) 2S₂O₃²⁻(aq) + I₂(aq) → S₄O₆²⁻(aq) + 2I⁻(aq) starch as indicator when thiosulphate is used up
Bromoalkanes
H₂SO₄(50% conc) + KBr --> HBr + KHSO₄ HBr +C₃H₇OH(l) --> C₃H₇Br(l) + H₂O
reduction of an aldehyde
LialH₄ in dry ether acts as a reducing agent
Magnesium with steam
Mg(s) + H₂0 ---> MgO + H₂
Magnesium with cold water
Mg(s) + H₂O ---> Mg(OH)2 + H₂
Hydrogen halides with ammonia
NH₃(g) + HCL(g) --> NH₄Cl (s)
bromide with sulphuric acid
NaBr(s) + H2SO4(l) ==> NaHSO4(s) + HBr(g) 2HBr(g) + H2SO4(l) ==> Br2(g) + SO2(g) + 2H2O(l)
chloride with sulphuric acid
NaCl + H2SO4 --> NaHSO4 + HCl
iodide with sulphuric acid
NaI(s) + H2SO4(l) ==> NaHSO4(s) + HI(g) 2HI(g) + H2SO4(l) ==> I2(g) + SO2(g) + 2H2O(l) 6HI(g) + SO2 ==> 3I2(g/s) + H2S(g) + 2H2O(l)
grignard reagent + CO2
R-MgBr + O=C=O → RCOOH +MgBrCl bubble CO₂ through grignard reagent in dry ether 2. add dilute acid eg HCl
production of grignard reagents
R-X → RMgX refluxing a halogenoalkane with magnesium in dry ether
fehlings solution with aldehyde + heat
RCHO(aq) + 2Cu²⁺ + 5OH⁻→RCOO⁻(aq) + Cu₂O(s) + 3H₂O(l) Blue→brick red ppt
carboxylic acid + phosphorous (V) chloride
RCOOH + PCl₅ → RCOCl + POCl₃ + HCl you get an acyl chloride
chlorination of alchols
ROH + HCl → RCl + H₂O fastest for tertiary rather than primary
chromium(III) ions + ammonia `
[Cr(H₂O)₆]³⁺(aq) + 3NH₃(aq) → [Cr(OH)₃(H₂O)₃](s) + 3NH₄⁺(aq) green → grey-green ppt
chromium(III) ions + NaOH
[Cr(H₂O)₆]³⁺(aq) + 3OH⁻(aq) → [Cr(OH)₃(H₂O)₃](s) + 3H₂O(l) green → grey-green ppt
chromium hydroxide ppt +excess ammonia
[Cr(OH)₃(H₂O)₃](s) + 6NH₃(aq) → [Cr(NH₃)₆](aq) + 3OH⁻(aq) + 3H₂O(l) ligand exchange reaction grey-green ppt → purple solution
chromium hydroxide ppt + excess NaOH
[Cr(OH)₃(H₂O)₃](s)+ 3OH⁻(aq) → [Cr(OH)₆]³⁻(aq) + 3H₂O(l) grey-green ppt → dark green solution H₂O ligands deprotonate
amines + copper ions
[Cu(H₂O)₆]²⁺ → [Cu(OH)₂(H₂O)₄] → [Cu(CH₃(CH₂)₃NH₂)₄(H₂O)₂]²⁺ addition of butylamine 1. pale blue ppt 2.deep blue solution
Copper(II) +NaOH
[Cu(H₂O)₆]²⁺(aq) + 2OH⁻(aq) →[Cu(OH)₂(H₂O)₄](s) + 2H₂O pale blue →blue ppt
Copper(II) +excess ammonia
[Cu(OH)₂(H₂O)₄](s) + 4NH₃(aq) → [Cu(NH₃)₄(H₂O)₄](s) +4H₂O + 2OH- ligand exchange blue ppt → deep blue solution
Iron (II) + Ammonia
[Fe(H₂O)₆]²⁺(aq) + 2NH₃(aq) → [Fe(OH)₂(H₂O)₄](s) + 2NH₄⁺(aq) pale green → green ppt(darkens on standing)
iron (II) + NaOH
[Fe(H₂O)₆]²⁺(aq) + 2OH⁻(aq) → [Fe(OH)₂(H₂O)₄](s) + 2H₂O(l) pale green → green ppt(darkens on standing)
test for tertiary alcohols
acidified potassium dichromate no change
test for primary alcohols
acidified potassium dichromate turns green from orange +H₂O
test for secondary alcohols
acidified potassium dichromate turns green from orange +H₂O
fuel cell in alkaline coniditions
anode = 2H₂ + 4OH⁻ → 4H₂O + 4e⁻ cathode = O₂ + 2H₂O + 4e⁻ --> 4OH-
fuel cell in acidic conditions
anode = H₂ → 2H⁺ + 2e⁻ cathode= ¹/₂O₂ + 2H⁺ + 2e⁻ →H2O
dehydrating agents
cacl2 MgSO₄
2,4-dinitrophnylhydrazine +dissolved in methanol and concentrated sulphuric acid
forms a bright orange ppt with carbonyl compounds
esterification (condensation)
heat with an concentrated acid catalyst reversible reaction therefore distill asap product mixed with NaCO₃ to react with carboxylic acid.
h3c-c-0 iodoform and methyl carbonyl
heat with iodine in presence of alkali RCOCH₃ + 3I₂ + 4OH⁻ → RCOO⁻ + CHI₃ + 3I⁻ + 3H₂Oi Yellow ppt antiseptic smell
catalytic hydrogenation of nitriles
high temperature high pressure metal catalyst Pt or Ni hydrogen gas
hydrolysis of polypeptides
hot aqueous 6 mol dm⁻³ HCl heated under reflux for 24 hours final mixture neutralised with a base
incomplete combustion
hydrocarbon + oxygen → carbon monoxide + (carbon) + water + (carbon dioxide)
amines + halogenoalkanes
like the ammonia as nitrogen has lone pair
OAlCl3- friedel-crafts
makes alcohols
hydrogen cyanide + carbonyl
nucleophilic addition (acidified potassium cyanide as HCN is toxic)
amino acid polymerisation
peptide link formed polypetide = protien
elimination alcohols can be dehydrated
phosphoric acid used
dicarboxylic acids + diamines
polyamide
catalytic cracking
produces alot fo aromatic compounds using a zeoltlite catalyst (hydrated aluminosilicate) at aslight pressure and high temperature of 450°C
thermal cracking
takes place at high temperatures and high pressure. (up to 1000°C 70 atm) this proudces alot of alkenes
group 1 carbonates
thermally stable except lithium Li₂CO₃(s) → Li₂O(s) +CO₂(g)
reduction of a nitrile
use LiAlH₄ in dry ether followed by dilute acid
acid hydrolysis of ester
use alot of dilute acid this is reversible
base hydrolysis of ester
use dilute alkali