3-2 Average Practice
100 degrees (corresponding angles postulate)
If the measure of angle 1 is 100 degrees, then find the measure of angle 2.
100 degrees (vertical angles theorem)
If the measure of angle 2 is 100 degrees, then find the measure of angle 3.
80 degrees (same side interior angles theorem)
If the measure of angle 2 is 100 degrees, then find the measure of angle 4.
80 degrees (linear pair angles theorem)
If the measure of angle 2 is 100 degrees, then find the measure of angle 9.
Unknown angle measure
If the measure of angle 3 is 100 degrees, then find the measure of angle 8.
5x + 75 + 10x + 50 = 180
If the measure of angle 4 = (5x + 75) and angle 2 = (10x + 50), then write an equation to model the situation.
100 degrees (same side interior angles theorem)
If the measure of angle 4 is 80 degrees, then find the measure of angle 2.
Unknown angle measure
If the measure of angle 4 is 80 degrees, then find the measure of angle 5.
100 degrees (linear pair angles theorem)
If the measure of angle 4 is 80 degrees, then find the measure of angle 6.
5x + 75 = 10x + 50
If the measure of angle 6 = (5x + 75) and angle 3 = (10x + 50), then write an equation to model the situation.
100 degrees (alternate interior angles theorem)
If the measure of angle 6 is 100 degrees, then find the measure of angle 2.
80 degrees (linear pair angles theorem)
If the measure of angle 6 is 100 degrees, then find the measure of angle 4.
100 degrees (vertical angles theorem)
If the measure of angle 7 is 100 degrees, then find the measure of angle 8.
Unknown angle measure
If the measure of angle 7 is 100 degrees, then find the measure of angle 9.
Unknown equation
If the measure of angle 9 = (5x + 75) and angle 7 = (10x + 50), then write an equation to model the situation.
Not Congruent
If two lines are not parallel, then alternate exterior angles are ___________________________________
Not Congruent
If two lines are not parallel, then alternate interior angles are ___________________________________
Not Congruent
If two lines are not parallel, then corresponding angles are ___________________________________
Not Supplementary
If two lines are not parallel, then same side interior angles are ___________________________________
Congruent
If two lines are parallel, then alternate exterior angles are ___________________________________
Congruent
If two lines are parallel, then alternate interior angles are ___________________________________
Congruent
If two lines are parallel, then corresponding angles are ___________________________________
Supplementary
If two lines are parallel, then same side interior angles are ___________________________________
Alternate Exterior Angle Pair & Congruent Angles
Name the angle pair and relationship between angle 2 and angle 7.
Alternate Exterior Angle Pair & Non-Congruent Angles
Name the angle pair and relationship between angle 2 and angle 7.
Corresponding Angle Pair & Congruent Angles
Name the angle pair and relationship between angle 3 and angle 8.
Corresponding Angle Pair Only
Name the angle pair and relationship between angle 3 and angle 8.
Same Side Interior Angle Pair & Non-Supplementary Angles
Name the angle pair and relationship between angle 6 and angle 3.
Same Side Interior Angle Pair & Supplementary Angles
Name the angle pair and relationship between angle 6 and angle 3.
Alternate Interior Angle Pair & Congruent Angles
Name the angle pair and relationship between angle 6 and angle 4.
Alternate Interior Angle Pair & Non-Congruent Angles
Name the angle pair and relationship between angle 6 and angle 4.