Chapter 6 Chemistry Test Study Guide

Lakukan tugas rumah & ujian kamu dengan baik sekarang menggunakan Quizwiz!

Qreaction

-Qsolution=?

DeltaE system=

-deltaE of the surroundings

q of the system

-q surroundings

standard enthalpy of formation for a pure element in its standard state

0

-467692.3077 J/mol

0.158 g Mg reacted with enough HCl (aq) to form 100 mL solution in a coffee cup calorimeter. Temperature changed from 25.6 degrees Celsius to 32.8 degrees Celsius. Specific heat of water is 4.18 J/gXdegrees Celsius. Density of water is 1.01 g/mL. Find deltaH of the reaction in J/mol.

-5.761x10^3 kJ/mol

1 g of sucrose (C12H22O11) is undergoing combustion in a bomb calorimeter. Temperature changed from 24.92 degrees Celsius to 28.33 degrees Celsius. Find the change of energy for the reaction in kJ/mole given that Ccal is 4.90 KJ/degrees Celsius

3.60x10^6 J

1 kWh = J?

If deltaH=+/-X if deltaH=+/-2X

1 mole of 2 reaction 2 mole of 2 reaction

q

=(m)(Cs)(DeltaT)

W

=PxDeltaV =FxD

DeltaE

=q+w =q+PxDeltaV

deltaH

? of a chemical reaction is the amount of heat absorbed (endothermic) or released (exothermic) in a chemical reaction

-1.24 × 103 kJ/mol

A 35.6 g sample of ethanol (C2H5OH) is burned in a bomb calorimeter, according to the following reaction. If the temperature rose from 35.0 to 76.0°C and the heat capacity of the calorimeter is 23.3 kJ/°C, what is the value of DH°rxn? The molar mass of ethanol is 46.07 g/mol. C2H5OH(l) + 3 O2(g) → 2 CO2(g) + 3 H2O(g) H°rxn = ? +9.55 × 103 kJ/mol +1.24 × 103 kJ/mol -8.09 × 103 kJ/mol -1.24 × 103 kJ/mol -9.55 × 103 kJ/mol

-3.20 × 103 kJ/mol

A 4.98 g sample of aniline (C6H5NH2, molar mass = 93.13 g/mol) was combusted in a bomb calorimeter with a heat capacity of 4.25 kJ/°C. If the temperature rose from 29.5°C to 69.8°C, determine the value of ΔE°comb for aniline. -1.71 × 103 kJ/mol -7.81 × 103 kJ/mol +1.71 × 103 kJ/mol +7.81 × 103 kJ/mol -3.20 × 103 kJ/mol

The temperature of the surroundings decreases and the sign on q is positive.

A cold piece of steel (the system) is dropped into a beaker of water (the surroundings) that is 25°C warmer than the piece of steel. Which statement below is true for the change that occurs once the piece of steel is dropped into the beaker of water? The value q in the answer choices below are relative to the system. The temperature of the surroundings decreases and the sign on q is negative. The temperature of the surroundings decreases and the sign on q is positive. The temperature of the surroundings increases and the sign on q is negative. The temperature of the system decreases and the sign on q is positive.

-6.132X10^5 kJ

A gas tank contains 13.2 kg of propane. Calculate the heat (in kJ) released when all the propane in the tank is burned. One mole of propane produes -2044 kJ of heat.

-2277 J

A long cylinder is packed with potatoes. Potatoes are fired. The work done is 855 J on the potatoes and produced 1422 J of heat. What is the change in energy for this process? (The cylinder is the system)

53.7075 J

A penny is in the snow at a temperature of -8 degrees Celsius. The penny has a mass of 3.10 grams. The specific heat of copper is 0.385 J/g times degrees Celsius. How much heat is absorbed by the penny as it warms up to 37 degrees Celsius?

Exothermic

Chemical Reaction in which energy is primarily given off in the form of heat

ΔH2−ΔH1

Consider the reactions: A→2B ΔH1 A→3C ΔH2 What is ΔH for the reaction 2B→3C? 2× (ΔH1+ΔH2) ΔH2−ΔH1 ΔH1+ΔH2 ΔH1−ΔH2

the quantity of heat required to change a system's temperature by 1°C

Define heat capacity. the quantity of heat required to change a system's temperature by 1°C the quantity of heat required to raise the temperature of 1 g of a substance by 1°F the quantity of heat required to lower the temperature of 1 mole of a substance by 1°C the quantity of heat required to lower the temperature of 1 gram of a substance by 1°C the quantity of heat required to lower the temperature of 1 liter of a substance by 1°C

the quantity of heat required to raise the temperature of 1 mole of a substance by 1°C

Define molar heat capacity.

the quantity of heat required to raise the temperature of 1 mole of a substance by 1°C

Define molar heat capacity. the quantity of heat required to change a system's temperature by 1°C the quantity of heat required to raise the temperature of 1 gram of a substance by 1°C the quantity of heat required to lower the temperature of 1 g of a substance by 1°F the quantity of heat required to raise the temperature of 1 mole of a substance by 1°C the quantity of heat required to lower the temperature of 1 liter of a substance by 1°C

the quantity of heat required to raise the temperature of 1 gram of a substance by 1°C

Define specific heat capacity. the quantity of heat required to lower the temperature of 1 mole of a substance by 1°C the quantity of heat required to change a system's temperature by 1°C the quantity of heat required to lower the temperature of 1 gram of a substance by 1°F the quantity of heat required to lower the temperature of 1 liter of a substance by 1°C the quantity of heat required to raise the temperature of 1 gram of a substance by 1°C

Law of Conservation of Energy

Energy cannot be created or destroyed, but it can be converted from one form to another

kinetic energy

Energy that is associated with the motion of an object is called?

-104.7kJ

Find the deltaH of the reaction of the following: 3C(s)+4H2(g)=C3H8(g) Given: (1) C3H8(g)+5O2(g)=3CO2(g)+4H2O(g) deltaH=-2043kJ (2) C(s)+O2(g)=CO2(g) deltaH=-393.5kJ (3) 2H2(g)+O2(g)=2H2O(g) deltaH=-483.6kJ

deltaH=+157.6 kJ

Find the deltaH of the reaction of the following: N2O (g)+NO2 (g)=3NO(g) Given: (1) 2NO (g)+O2 (g)=2NO2 (g) delta H=-113.1 KJ (2) N2 (g)+O2(g)=2 NO (g) delta H=182.6 kJ (3) 2N2O (g)=2N2 (g)+O2 (g) delta H=-163.2 kJ

The system lost heat and did work on the surroundings.

For a certain process, q and w are both negative. What does this mean?

The system lost heat and did work on the surroundings.

For a certain process, q and w are both negative. Which description below best describes what happened during the process? The system gained heat and the surroundings did work on the system. The surroundings gained heat and did work on the system. The system lost heat and did work on the surroundings. The surroundings lost heat and the system did work on the surroundings.

-w > +q

For ΔEsys to always be -, what must be true? q = w +w > -q +q > -w -w > +q

J/g °C

Give the units of specific heat capacity. gmole °C g/°C J/g °C Jmole °C J/°C

+ ΔH and +ΔE

Given w = 0, an endothermic reaction has the following. + ΔH and +ΔE - ΔH and +ΔE +ΔH and -ΔE - ΔH and -ΔE

from objects of higher temperature to objects of lower temperature

How does energy flow?

w=−PΔV

How is pressure volume work calculated? w=−PΔV w=P+V w=PΔV w=P−ΔV

Until thermal equilibrium is reached (both objects temperature is equal)

How long will heat exchange continue?

1.52 x 103 kJ

How much energy is evolved during the formation of 197 g of Fe, according to the reaction below? Fe2O3(s) + 2 Al(s) → Al2O3(s) + 2 Fe(s) ΔH°rxn = -852 kJ 3.02 x 103 kJ 964 kJ 482 kJ 1.52 x 103 kJ 8.40 x 103 kJ

deltaH of the reaction must be multiplied by the same factor Example: A+B=C 4A+4B=4C

If a chemical reaction is multiplied by a factor the what happens to the deltaH of the reaction?

0

If the work is done under constant volume, then what is deltaV?

two times

If you have one mole of two reactants whatever deltaH is released/absorbed, the delta H released/absorbed will be how many times?

-177.275 J

If you inflate a balloon from a volume of 0.100 L to 1.85 L against an external pressure of 1 atm. How much work is done in joules by the system? 1 Lxatm=101.3 Joules

-94.6 kJ

In the presence of excess oxygen, methane gas burns in a constant-pressure system to yield carbon dioxide and water: CH4(g) + 2O2(g) → CO2(g) + 2H2O(l) ΔH = -890.0 kJ Calculate the value of q (kJ) in this exothermic reaction when 1.70 g of methane is combusted at constant pressure. -94.6 kJ 0.0306 kJ -9.46 × 104 kJ 32.7 kJ -0.0106 kJ

Exothermic

Is a hot cup of coffee (system) cools on a countertop endothermic or exothermic?

Yes

Is enthalpy a state function?

Yes

Is internal energy a state function?

Exothermic

Is the chemical reaction in a "hot pack" often used to treat sore muscles endothermic or exothermic?

Exothermic

Is the combustion of butane endothermic or exothermic?

Endothermic

Is the evaporation of alcohol endothermic or exothermic?

Exothermic

Is the freezing of water endothermic or exothermic?

Units of Energy

Joules (J) kilowatt hour (kWh) Calorie (Cal) calorie (cal)

1/2 kg(m/s)^2 (m=mass) (v=velocity)

KE and Joule

coffee-cup calorimetry

Occurs at constant pressure and measures delta H for a reaction

The measure of a substances ability to absorb heat

Specific heat (Cs)

The surrounding is doing work on the system(energy flows from the surroundings to the system)

System is gaining deltaE (E final is greater than E initial)(deltaE is positive)

Joule

The amount of energy needed to move a mass of one kg at a velocity of one m/s

Enthalpy (H) or heat of a reaction

The heat evolved in a chemical reaction at constant pressure. The heat content of a system.

None of the above statements are true.

Two aqueous solutions are both at room temperature and are then mixed in a coffee cup calorimeter. The reaction causes the temperature of the resulting solution to fall below room temperature. Which of the following statements is TRUE? Energy is leaving the system during reaction. This type of experiment will provide data to calculate ΔErxn. The products have a lower potential energy than the reactants. The reaction is exothermic. None of the above statements are true.

kinetic and potential energy

Two basic types of energy

-59 kJ

Two solutions, initially at 24.60°C, are mixed in a coffee cup calorimeter (Ccal = 15.5 J/°C). When a 100.0 mL volume of 0.100 M AgNO3 solution is mixed with a 100.0 mL sample of 0.200 M NaCl solution, the temperature in the calorimeter rises to 25.30°C. Determine the DH°rxn for the reaction as written below. Assume that the density and heat capacity of the solutions is the same as that of water. NaCl(aq) + AgNO3(aq) → AgCl(s) + NaNO3(aq) DH°rxn = ? -59 kJ -16 kJ -250 kJ -35 kJ -140 kJ

Constant volume

Under what conditions is the change in internal energy, ΔE rxn , equal to the heat evolved in a reaction? Constant pressure Constant volume Constant temperature ΔE rxn is never equal to the heat evolved in a reaction.

-791.4 kJ

Use the standard reaction enthalpies given below to determine ΔH°rxn for the following reaction: 2 S(s) + 3 O2(g) → 2 SO3(g) ΔH°rxn = ? Given: SO2(g) → S(s) + O2(g) ΔH°rxn = +296.8 kJ 2 SO2(g) + O2(g) → 2 SO3(g) ΔH°rxn = -197.8 kJ -791.4 kJ -293.0 kJ -494.6 kJ -692.4 kJ 1583 kJ

-1835 kJ

Use the standard reaction enthalpies given below to determine ΔH°rxn for the following reaction: P4(g) + 10 Cl2(g) → 4PCl5(s) ΔH°rxn = ? Given: PCl5(s) → PCl3(g) + Cl2(g) ΔH°rxn = +157 kJ P4(g) + 6 Cl2(g) → 4 PCl3(g) ΔH°rxn = -1207 kJ -1364 kJ -1786 kJ -1835 kJ -1050. kJ -2100. kJ

Both are positive

What are the signs for deltaE and deltaH if w=0 in an endothermic reaction?

The system ( the reactant) is giving deltaE to the surroundings

What does it mean if E initial is larger than E final (delta E is negative)

1000 calories 4184 Joules

What does one Calorie equal in calories and joules?

deltaE

What does the heat of a system equal at constant volume (Qv)?

The final deltaH of the reaction is the sum of all the steps. Example: A=B deltaH B=C deltaH2 A=C deltaH+deltaH2=deltaH of the reaction

What happens to delta H if a chemical reaction is made up of multiple steps?

The sign of deltaH will be reversed Example: A+B=C deltaH=-10kJ (exothermic) C=A+B delta H=+10 kJ(endothermic)

What happens to delta H if a reaction is reversed?

depends on initial and final states only. energy does not depend on how the system arrives at the final state

What is a state function

Pressure-volume work is work that happens when force is procured by a volume change pushing against an external pressure.

What is pressure-volume work?

joule

What is the SI unit of energy? bar calorie joule kilowatt-hour

deltaE+Pressure times deltaV

What is the change in enthalpy formula (deltaH)?

MsolxCs(solution)xdeltaT(solution)

What is the equation for the Qsolution?

deltaE=Qv

What is the formula for change of energy under constant volume?

deltaE=q+w

What is the formula for change of energy?

DeltaE=work+heat DeltaE=w+q

What is the formula for deltaE

E+PV

What is the formula for enthalpy (H) at constant pressure?

C=Q/delta T

What is the formula for heat capacity?

q=(m)(Cs)(deltaT)

What is the formula for heat when you are given mass and the specific heat of a substance?

q=cxdeltaT c=constant of proportionality or heat capacity

What is the formula for heat?

deltaE=q+w deltaErxn=Qrxn deltaErxn=Qrxn/mole

What is the formula for measuring deltaE in a bomb calorimeter?

q=(Cs)(deltaT)(m) m=mass in grams delta T=degree Celsius or Kelvin Cs=J/degree Celsius times gram Cs=q/deltaT times m

What is the formula for specific heat (Cs)

deltaE=Efinal-Einitial

What is the formula for the change of energy?

Qcal=Ccal*deltaT Qcal=-Qrxn

What is the formula to determine the change in energy in a bomb calorimeter?

deltaH=Qp

What is the formula to measure deltaH of a reaction at constant pressure in a calorimetry?

deltaHrxn/1 mole of reactant

What is the heat of reaction per mole?

J/degrees Celsius

What is the unit for heat capacity?

0

What is the value of work in a bomb calorimeter?

Extensive property. It depends on the quantity of the matter.

What kind of property is enthalpy?

Pressure

What part of a reaction is constant in a calorimetry?

Negative on both

What signs on q and w represent a system that is doing work on the surroundings, as well as losing heat to the surroundings?

The system is losing 115 J, while the surroundings are gaining 115 J.

Which of the following is TRUE if ΔEsys = - 115 J? Both the system and the surroundings are gaining 115 J. The system is losing 115 J, while the surroundings are gaining 115 J. Both the system and the surroundings are losing 115 J. The system is gaining 115 J, while the surroundings are losing 115 J. None of the above are true.

for a solid, it is 25°F

Which of the following is not a standard state? for a gas, it is 1 atm for a liquid, it is 25°C for a liquid, it is 1 atm for a solid, it is 25°F for a solution, it is 1 M

for a liquid, it is 25°F

Which of the following is not a standard state? for a solution, it is 1 M for a solid, it is 25°C for a liquid, it is 25°F for a liquid, it is 1 atm for a solid, it is 1 atm

the vaporization of rubbing alcohol

Which of the following processes is endothermic? the vaporization of rubbing alcohol the chemical reaction in a "hot pack" often used to treat sore muscles the freezing of water a hot cup of coffee (system) cools on a countertop the combustion of butane

a candle flame

Which of the following processes is exothermic? the chemical reaction in a "cold pack" often used to treat injuries baking bread a candle flame the vaporization of water None of the above are exothermic.

q = -, w = -

Which of the following signs on q and w represent a system that is doing work on the surroundings, as well as losing heat to the surroundings? q = -, w = - q = -, w = + q = +, w = + q = +, w = - None of these represent the system referenced above.

Heat transfers from the block to the water. q metal- q water

You have a metal block at 55 degrees Celsius, that you put into a container of water at 25 degrees Celsius. What happens to the heat? What is the formula to determine the heat transferred?

Standard state for a substance in solution

a concentration of exactly 1 M

system

an object of chemical reaction under study

DeltaT

change in temperature between two objects

Qp=Qrxn

deltaHrxn at constant pressure=?

+deltaH

endothermic reaction

thermal energy

energy associated with the temperature of an object

Potential Energy

energy due to position or composition Example: chemical, nuclear

Kinetic energy

energy of motion Example: electric, thermal

-deltaH

exothermic reation

products

final energy

W=FxD W=(P)(deltaV)

formula for work

therm

heat

two

how many kinds of energy is there?

reactants

initial energy

kinetic+potential energy

internal energy of a system

1/2mv^2

kinetic energy

first law of thermodynamics

law of conservation of energy total earth's energy is constant energy cannot be created or destroyed there is no perpetual motion machine

thermochemistry

means relationship between a chemical reaction and heat/energy

energy flows out of the system

negative deltaE

system loses thermal energy

negative q

work done by the system

negative w

Bomb calorimetry

occurs at constant volume and measures delta E for a reaction

energy flows into the system

positive deltaE

system gains thermal energy

positive q

work done on the system

positive w

DeltaT

q is proportional to what?

Energy

the ability to do work

chemical energy

the energy associated with the relative positions of electrons and nuclei in atoms and molecules

Internal energy

the energy of a system (kinetic and potential)

surroundings

the environment around the system

Standard State for a gas

the pure gas at a pressure of exactly 1 atm.

Standard state for a liquid or solid

the pure substance in its most stable form at a pressure of 1 atm and at the temperature of interest (often taken to be 25 degrees Celsius)

bomb calorimeter

using what can you determine the change of heat of a system at constant volume?

4.184 Joules

what does one calorie equal?

elevation

what is one example of a state function? a. elevation b. distance

Standard enthalpy of formation for a pure compound

when 1 mol of the compound forms from its constituent elements in the standard states


Set pelajaran terkait

Grays questions Anatomy- Head and neck

View Set

Chapter 6: Anomalies of Color Vision

View Set

Chapter 13 BIG QUESTIONS Gifted/Talented

View Set

Data Structures & Algorithms Exam Linked Lists

View Set

Biology Final 1st semester Review

View Set

Logical Fallacy Quiz-Public Speaking

View Set

Global Relations Unit 7 The United Nations and Human Rights

View Set