16

Ace your homework & exams now with Quizwiz!

Which of the following mechanisms is not directly involved in inactivating an activated RTK? (a) dephosphorylation by serine/threonine phosphatases (b) dephosphorylation by protein tyrosine phosphatases (c) removal of the RTK from the plasma membrane by endocytosis (d) digestion of the RTK in lysosomes

a

Which of the following statements about molecular switches is false? (a) Phosphatases remove the phosphate from GTP on GTP-binding proteins, turning them off. (b) Protein kinases transfer the terminal phosphate from ATP onto a protein. (c) Serine/threonine kinases are the most common types of protein kinase. (d) A GTP-binding protein exchanges its bound GDP for GTP to become activated.

a

Which of the following statements is inconsistent with your data? (a) When the transcriptional regulator is phosphorylated, it activates transcription of the ethylene-responsive genes. (b) When the transcriptional regulator is not phosphorylated, it binds to DNA. (c) Activation of the protein kinase that binds to the ethylene receptor leads to inactivation of PtpE. (d) Binding of ethylene to its receptor leads to the activation of PtpE.

a

Which of the following statements is true? (a) Extracellular signal molecules that are hydrophilic must bind to a cell-surface receptor so as to signal a target cell to change its behavior. (b) To function, all extracellular signal molecules must be transported by their receptor across the plasma membrane into the cytosol. (c) A cell-surface receptor capable of binding only one type of signal molecule can mediate only one kind of cell response. (d) Any foreign substance that binds to a receptor for a normal signal molecule will always induce the same response that is produced by that signal molecule on the same cell type.

a

You are interested in cell-size regulation and discover that signaling through a GPCR called ERC1 is important in controlling cell size in embryonic rat cells. The G protein downstream of ERC1 activates adenylyl cyclase, which ultimately leads to the activation of PKA. You discover that cells that lack ERC1 are 15% smaller than normal cells, while cells that express a mutant, constitutively activated version of PKA are 15% larger than normal cells. Given these results, which of the following treatments to embryonic rat cells should lead to smaller cells? (a) addition of a drug that causes cyclic AMP phosphodiesterase to be hyperactive (b) addition of a drug that prevents GTP hydrolysis by Gα (c) a ddition of a drug that activates adenylyl cyclase (d) addition of a drug that mimics the ligand of ERC1

a

Figure Q16-18 shows the pathway through which nitric oxide (NO) triggers smooth muscle relaxation in a blood-vessel wall. Which of the following situations would lead to relaxation of the smooth muscle cells in the absence of acetylcholine?

a) a smooth muscle cell that has a defect in guanylyl cyclase such that it cannot bind NO (b) a muscle cell that has a defect in guanylyl cyclase such that it constitutively converts GTP to cyclic GMP (c) a muscle cell that has cyclic GMP phosphodiesterase constitutively active (d) a drug that blocks an enzyme involved in the metabolic pathway from arginine to NO

Circle the phrase in each pair that is likely to occur more rapidly in response to an extracellular signal. A. changes in cell secretion / increased cell division B. changes in protein phosphorylation / changes in proteins being synthesized C. changes in mRNA levels / changes in membrane potential

a. changes in cell secretion b. changes in protein phosphorylation c. changes in membrane potential

Acetylcholine is a signaling molecule that elicits responses from heart muscle cells, salivary gland cells, and skeletal muscle cells. Which of the following statements is false? (a) Heart muscle cells decrease their rate and force of contraction when they receive acetylcholine, whereas skeletal muscle cells contract. (b) Heart muscle cells, salivary gland cells, and skeletal muscle cells all express an acetylcholine receptor that belongs to the transmitter-gated ion channel family. (c) Active acetylcholine receptors on salivary gland cells and heart muscle cells activate different intracellular signaling pathways. (d) Heart muscle cells, salivary gland cells, and skeletal muscle cells all respond to acetylcholine within minutes of receiving the signal.

b

During the mating process, yeast cells respond to pheromones secreted by other yeast cells. These pheromones bind GPCRs on the surface of the responding cell and lead to the activation of G proteins inside the cell. When a wild-type yeast cell senses the pheromone, its physiology changes in preparation for mating: the cell stops growing until it finds a mating partner. If yeast cells do not undergo the appropriate response after sensing a pheromone, they are considered sterile. Yeast cells that are defective in one or more components of the G protein have characteristic phenotypes in the absence and presence of the pheromone, which are listed in Table 16-34. Which of the following models is consistent with the data from the analysis of these mutants? Explain your answer. (a) α activates the mating response but is inhibited when bound to βγ (b) βγ activates the mating response but is inhibited when bound to α (c) the G protein is inactive; either free α or free βγ complex is capable of activating the mating response (d) the G protein is active; both free α and free βγ complex are required to inhibit the mating response

b

A protein kinase can act as an integrating device in signaling if it ___________________. (a) phosphorylates more than one substrate. (b) catalyzes its own phosphorylation. (c) is activated by two or more proteins in different signaling pathways. (d) initiates a phosphorylation cascade involving two or more protein kinases.

c

Foreign substances like nicotine, morphine, and menthol exert their initial effects by____. (a) killing cells immediately, exerting their physiological effects by causing cell death. (b) diffusing through cell plasma membranes and binding to transcription factors to change gene expression. (c) interacting with cell-surface receptors, causing the receptors to transduce signal inappropriately in the absence of the normal stimulus. (d) removing cell-surface receptors from the plasma membrane

c

The following happens when a G-protein-coupled receptor activates a G protein. (a) The β subunit exchanges its bound GDP for GTP. (b) The GDP bound to the α subunit is phosphorylated to form bound GTP. (c) The α subunit exchanges its bound GDP for GTP. (d) It activates the α subunit and inactivates the βγ complex

c

The growth factor Superchick stimulates the proliferation of cultured chicken cells. The receptor that binds Superchick is a receptor tyrosine kinase (RTK), and many chicken tumor cell lines have mutations in the gene that encodes this receptor. Which of the following types of mutation would be expected to promote uncontrolled cell proliferation? (a) a mutation that prevents dimerization of the receptor (b) a mutation that destroys the kinase activity of the receptor (c) a mutation that inactivates the protein tyrosine phosphatase that normally removes the phosphates from tyrosines on the activated receptor (d) a mutation that prevents the binding of the normal extracellular signal to the receptor

c

All members of the steroid hormone receptor family __________________. (a) are cell-surface receptors. (b) do not undergo conformational changes. (c) are found only in the cytoplasm. (d) interact with signal molecules that diffuse through the plasma membrane.

d

During nervous-system development in Drosophila, the membrane-bound protein Delta acts as an inhibitory signal to prevent neighboring cells from developing into neuronal cells. Delta is involved in ______________ signaling. (a) endocrine (b) paracrine (c) neuronal (d) contact-dependent

d

The length of time a G protein will signal is determined by _______. (a) the activity of phosphatases that turn off G proteins by dephosphorylating Gα. (b) the activity of phosphatases that turn GTP into GDP. (c) the degradation of the G protein after Gαseparates from Gβγ (d) the GTPase activity of Gα

d

Which of the following statements about G-protein-coupled receptors (GPCRs) is false? (a) GPCRs are the largest family of cell-surface receptors in humans. (b) GPCRs are used in endocrine, paracrine, and neuronal signaling. (c) GPCRs are found in yeast, mice, and humans. (d) The different classes of GPCR ligands (proteins, amino acid derivatives, or fatty acids) bind to receptors with different numbers of transmembrane domains.

d

Which of the following statements is false? (a) A constitutively active mutant form of PKA in skeletal muscle cells would lead to a decrease in the amount of unphosphorylated phosphorylase kinase. (b) A constitutively active mutant form of PKA in skeletal muscle cells would not increase the affinity of adrenaline for the adrenergic receptor. (c) A constitutively active mutant form of PKA in skeletal muscle cells would lead to an excess in the amount of glucose available. (d) A constitutively active mutant form of PKA in skeletal muscle cells would lead to an excess in the amount of glycogen available.

d

Which of the following statements is false? (a) In the presence of a survival signal, Akt is phosphorylated. (b) In the absence of a survival signal, Bad inhibits the cell-death inhibitor protein Bcl2. (c) In the presence of a survival signal, the cell-death inhibitory protein Bcl2 is active. (d) In the absence of a survival signal, Bad is phosphorylated.

d

Which of the following statements is false? (a) Nucleotides and amino acids can act as extracellular signal molecules. (b) Some signal molecules can bind directly to intracellular proteins that bind DNA and regulate gene transcription. (c) Some signal molecules are transmembrane proteins. (d) Dissolved gases such as nitric oxide (NO) can act as signal molecules, but because they cannot interact with proteins they must act by affecting membrane lipids.

d

When Ras is activated, cells will divide. A dominant-negative form of Ras clings too tightly to GDP. You introduce a dominant-negative form of Ras into cells that also have a normal version of Ras. Which of the following statements is true? (a) The cells you create will divide less frequently than normal cells in response to the extracellular signals that typically activate Ras. (b) The cells you create will run out of the GTP necessary to activate Ras. (c) The cells you create will divide more frequently compared to normal cells in response to the extracellular signals that typically activate Ras. (d) The dominant-negative Ras binds to GDP too tightly. normal Ras in the cells you create will not be able to bind GDP because the

a

The activation of the serine/threonine protein kinase Akt requires phosphoinositide 3-kinase (PI 3-kinase) to _________. (a) activate the RTK. (b) create phosphorylated lipids that serve as docking sites that localize Akt to the plasma membrane. (c) directly phosphorylate Akt. (d) to create DAG.

b

The growth factor RGF stimulates proliferation of cultured rat cells. The receptor that binds RGF is a receptor tyrosine kinase called RGFR. Which of the following types of alteration would be most likely to prevent receptor dimerization? (a) a mutation that increases the affinity of RGFR for RGF (b) a mutation that prevents RGFR from binding to RGF (c) changing the tyrosines that are normally phosphorylated on RGFR dimerization to alanines (d) changing the tyrosines that are normally phosphorylated on RGFR dimerization to glutamic acid

b

When a a the signal needs to be sent to most cells throughout multicellular organism, signal most suited for this is a ___________. (a) neurotransmitter. (b) hormone. (c) dissolved gas. (d) scaffold.

b

Which of the following statements is true? (a) Because endocrine signals are broadcast throughout the body, all cells will respond to the hormonal signal. (b) The regulation of inflammatory responses at the site of an infection is an example of paracrine signaling. (c) Paracrine signaling involves the secretion of signals into the bloodstream for distribution throughout the organism. (d) The axons of neurons typically signal target cells using membrane-bound signaling molecules that act on receptors in the target cells.

b

Which of the following statements is true? (a) MAP kinase is important for phosphorylating MAP kinase kinase. (b) PI 3-kinase phosphorylates a lipid in the plasma membrane. (c) Ras becomes activated when an RTK phosphorylates its bound GDP to create GTP. (d) STAT proteins phosphorylate JAK proteins, which then enter the nucleus and activate gene transcription.

b

You are interested in further understanding the signal transduction pathway that controls the production of Pig1, a protein important for regulating cell size. Activation of the TRK receptor leads to activation of the GTP-binding protein, Ras, which then activates a protein kinase that phosphorylates the SZE transcription factor. SZE only interacts with the nuclear transport receptor when it is phosphorylated. SZE is a gene activator for the Pig1 gene. This pathway is diagrammed in Figure Q16-50. Normal cells grown under standard conditions (without ligand) are 14 µm in diameter while normal cells exposed to TRK ligand are 10.5 µm in diameter. Given this situation, which of the following conditions do you predict will more likely lead to smaller cells? (a) addition of TRK ligand and a drug that stimulates the GTPase activity of Ras (b) addition of TRK ligand and a drug that inhibits the activity of the phosphatase that acts on SZE (c) addition of TRK ligand and a drug that stimulates the degradation of Pig1 (d) addition of TRK ligand and a drug that inhibits Pig1 binding to DNA

b

The lab you work in has discovered a previously unidentified extracellular signal molecule called QGF, a 75,000-dalton protein. You add purified QGF to different types of cells to determine its effect on these cells. When you add QGF to heart muscle cells, you observe an increase in cell contraction. When you add it to fibroblasts, they undergo cell division. When you add it to nerve cells, they die. When you add it to glial cells, you do not see any effect on cell division or survival. Given these observations, which of the following statements is most likely to be true? (a) Because it acts on so many diverse cell types, QGF probably diffuses across the plasma membrane into the cytoplasm of these cells. (b) Glial cells do not have a receptor for QGF. (c) QGF activates different intracellular signaling pathways in heart muscle cells, fibroblasts, and nerve cells to produce the different responses observed. (d) Heart muscle cells, fibroblasts, and nerve cells must all have the same receptor for QGF.

c

The local mediator nitric oxide stimulates the intracellular enzyme guanylyl cyclase by ________________. (a) activating a G protein. (b) activating a receptor tyrosine kinase. (c) diffusing into cells and stimulating the cyclase directly. (d) activating an intracellular protein kinase.

c


Related study sets

Chapter 22 Nursing Management of the Postpartum Woman at Risk

View Set

Imperialism (overview, africa, india, china, japan)

View Set

MASTERING BIOLOGY-DNA REPLICATION

View Set

Bio 8e(Cmp-2) Q&A-Ch1 to Ch5 (Final)

View Set

Chemistry Hybridization and Bonding

View Set

Grade 12 Biology; Photosynthesis

View Set

Systematic Review and Meta Analysis

View Set

development and learning test one

View Set