Chapter 15 Questions

Ace your homework & exams now with Quizwiz!

Which of the following levels would be classified as a low-flow system of oxygen administration? a. O2 via nasal cannula at 4 L/min b. O2 via nasal catheter at a FiO2 range of 60% to 75% c. O2 via transtracheal catheter at 10 L/min d. O2 via simple mask at 12 L/min.

ANS: A A low-flow oxygen delivery system provides supplemental oxygen directly into the patient's airway at a flow of 8 L/min or less. Because this flow is insufficient to meet the patient's inspiratory volume requirements, it results in a variable FiO2 as the supplemental oxygen is mixed with room air. Nasal catheter FiO2 range is 22% to 45%. Oxygen flow through a transtracheal catheter is 0.25 to 4 L/min. A simple mask is a reservoir delivery system.

Which route for ETT placement is used in an emergency? a. Orotracheal b. Nasotracheal c. Nasopharyngeal d. Trachea

ANS: A An endotracheal tube (ETT) may be placed through the orotracheal or the nasotracheal route. In most situations involving emergency placement, the orotracheal route is used because it is simpler and allows the use of a larger diameter ETT. Nasotracheal intubation provides greater patient comfort over time and is preferred in patients with a jaw fracture.

A patient was admitted to the critical care unit with acute respiratory failure. The patient has been on a ventilator for 3 days and is being considered for weaning. The ventilator high-pressure alarm keeps going off. When you enter the room, the ventilator inoperative alarm sounds. All of the following conditions would set off the high-pressure alarm except a. a leak in the patient's ET tube cuff b. a kink in the ET tubing c. coughing d. increased secretions in the patient's airway

ANS: A Low inspiratory pressure alarms will sound because of altered settings, unattached tubing or a leak around the endotracheal tube (ETT), the ETT displaced into the pharynx or esophagus, poor cuff inflation or leak, tracheoesophageal fistula, peak flows that are too low, low tidal volume (Vt), decreased airway resistance resulting from decreased secretions or relief of bronchospasm, increased lung compliance resulting from decreased atelectasis, reduction in pulmonary edema, resolution of ARDS, or a change in position. High-pressure alarms will sound because of improper alarm setting; airway obstruction resulting from patient fighting ventilator (holding breath as ventilator delivers Vt); patient circuit collapse; kinked tubing; the ETT in the right mainstem bronchus or against the carina; cuff herniation; increased airway resistance resulting from bronchospasm, airway secretions, plugs, and coughing; water from the humidifier in the ventilator tubing; and decreased lung compliance resulting from tension pneumothorax, change in patient position, acute respiratory distress syndrome, pulmonary edema, atelectasis, pneumonia, or abdominal distention.

The finding of normal breath sounds on the right side of the chest and absent breath sounds on the left side of the chest in a newly intubated patient is probably caused by a a. right mainstem intubation. b. left pneumothorax. c. right hemothorax. d. gastric intubation.

ANS: A The finding of normal breath sounds on the right side of the chest and absent breath sounds on the left side of the chest in a newly intubated patient is probably caused by a right mainstem intubation.

The assist-control mode of ventilation functions in which of the following manners? a. It delivers gas at preset volume, at a set rate, and in response to the patient's inspiratory efforts. b. It delivers gas at a preset volume, allowing the patient to breathe spontaneously at his or her own volume. c. It applies positive pressure during both ventilator breaths and spontaneous breaths. d. It delivers gas at preset rate and tidal volume regardless of the patient's inspiratory efforts.

ANS: A Whereas a breath that is initiated by the patient is known as a patient-triggered or patient-assisted breath, a breath that is initiated by the ventilator is known as a machine-triggered or machine-controlled breath. A time-triggered breath is a machine-controlled breath that is initiated by the ventilator after a preset length of time has elapsed. It is controlled by the rate setting on the ventilator (e.g., a rate of 10 breaths/min yields 1 breath every 6 seconds). Flow-triggered and pressure-triggered breaths are patient-assisted breaths that are initiated by decreased flow or pressure, respectively, within the breathing circuit.

Which of the following oxygen administration devices can deliver oxygen concentrations of 90%? a. Nonrebreathing mask b. Nasal cannula c. Partial rebreathing mask d. Simple mask

ANS: A With an FiO2 of 55% to 70%, a nonrebreathing mask with a tight seal over the face can deliver 90% to 100% oxygen. It is used in emergencies and short-term therapy requiring moderate to high FiO2.

Which of the following should be used when suctioning a mechanically ventilated patient? (Select all that apply.) a. Three hyperoxygenation breaths (breaths at 100% FiO2) b. Hyperinflation (breaths at 150% tidal volume) c. Limit the number of passes to three. d. Instill 5 to 10 mL of normal saline to facilitate secretion removal. e. Use intermittent suction to avoid damaging tracheal tissue.

ANS: A, B, C Hyperoxygenation, hyperinflation, and limiting the number of passes help avoid desaturation. There is no evidence to suggest that intermittent suction reduces damage, and saline instillation can actually increase the risk for infection.

Complications of ETT tubes include (Select all that apply.) a. tracheoesophageal fistula. b. cricoid abscess. c. tracheal stenosis. d. tube obstruction. e. tube displacements.

ANS: A, B, C, D, E Complications of endotracheal tubes include tube obstruction, tube displacement, sinusitis and nasal injury, tracheoesophageal fistula, mucosal lesions, laryngeal or tracheal stenosis, and cricoid abscess.

Identify the clinical manifestations associated with oxygen toxicity. (Select all that apply.) a. Substernal chest pain that increases with deep breathing b. Moist cough and tracheal irritation c. Pleuritic pain occurring on inhalation, followed by dyspnea d. Increasing CO2 e. Sore throat and eye and ear discomfort

ANS: A, C, E A number of clinical manifestations are associated with oxygen toxicity. The first symptom is substernal chest pain that is exacerbated by deep breathing. A dry cough and tracheal irritation follow. Eventually, definite pleuritic pain occurs on inhalation followed by dyspnea. Upper airway changes may include a sensation of nasal stuffiness, sore throat, and eye and ear discomforts.

A patient was admitted to the critical care unit with acute respiratory failure. The patient has been on a ventilator for 3 days and is being considered for weaning. The ventilator high-pressure alarm keeps going off. When you enter the room, the ventilator inoperative alarm sounds. What is the primary action the nurse would take? a. Troubleshoot the ventilator until the problem is found. b. Take the patient off the ventilator and manually ventilate her. c. Call the respiratory therapist for help. d. Silence the ventilator alarms until the problem is resolved.

ANS: B Ensure emergency equipment is at bedside at all times (e.g., manual resuscitation bag connected to oxygen, masks, suction equipment or supplies), including preparations for power failures. If the ventilator malfunctions, the patient should be removed from the ventilator and ventilated manually with a manual resuscitation bag.

Nursing management of the patient receiving a neuromuscular blocking agent should include a. withholding all sedation and narcotics. b. protecting the patient from the environment. c. keeping the patient supine. d. speaking to the patient only when necessary.

ANS: B Patient safety is a major concern for the patient receiving a neuromuscular blocking agent because these patients are unable to protect themselves from the environment. Special precautions should be taken to protect the patient at all times.

A patient was taken to surgery for a left lung resection earlier today. The patient has been in the postoperative care unit for 30 minutes. When you are completing your assessment, you notice that the chest tube has drained 125 cc of red fluid in the past 30 minutes. The nurse contacts the physician and suspects that the patient has developed a. pulmonary edema. b. hemorrhage. c. acute lung failure. d. bronchopleural fistula.

ANS: B Hemorrhage is an early, life-threatening complication that can occur after a lung resection. It can result from bronchial or intercostal artery bleeding or disruption of a suture or clip around a pulmonary vessel. Excessive chest tube drainage can signal excessive bleeding. During the immediate postoperative period, chest tube drainage should be measured every 15 minutes; this frequency should be decreased as the patient stabilizes. If chest tube loss is greater than 100 mL/hr, fresh blood is noted, or a sudden increase in drainage occurs, hemorrhage should be suspected.

Which medication may be administered with a bronchodilator because it can cause bronchospasms? a. b. Mucloytics β2-Agonists c. Anticholinergic agents d. Xanthines

ANS: B Mucolytics may be administered with a bronchodilator because it can cause bronchospasms and inhibit ciliary function. Treatment is considered effective when bronchorrhea develops and coughing occurs. β2-Agonists are used to relax bronchial smooth muscle and dilate airways to prevent bronchospasms. Anticholinergic agents are used to block the constriction of bronchial smooth muscle and reduce mucus production. Xanthines are used to dilate bronchial smooth muscle and reverse diaphragmatic muscle fatigue.

Patient safety precautions when working with oxygen involve a. observation for signs of oxygen-introduced hyperventilation. b. restriction of smoking. c. removal of all oxygen devices when eating to prevent aspiration. d. administration of oxygen at the nurse's discretion.

ANS: B Patient safety precautions when working with oxygen involve administration of oxygen and monitoring of its effectiveness. Activities include restricting smoking, administering supplemental oxygen as ordered, observing for signs of oxygen-induced hypoventilation, monitoring the patient's ability to tolerate removal of oxygen while eating, and changing the oxygen delivery device from a mask to nasal prongs during meals as tolerated

Which of the following statements is correct concerning endotracheal tube cuff management? a. The cuff should be deflated every hour to minimize pressure on the trachea. b. A small leak should be heard on inspiration if the cuff has been inflated using the minimal leak technique. c. Cuff pressures should be kept between 40 to 50 mm Hg to ensure an adequate seal. d. Cuff pressure monitoring should be done once every 24 hours.

ANS: B The minimal leak technique consists of injecting air into the cuff until no leak is heard and then withdrawing the air until a small leak is heard on inspiration. Problems with this technique include difficulty maintaining positive end-expiratory pressure and aspiration around the cuff.

The most accurate and reliable control of FiO2 can be achieved through the use of a(n) a. simple mask. b. nonrebreathing circuit (closed). c. air-entrainment mask. d. nonrebreathing mask.

ANS: B The most reliable and accurate means of delivering a prescribed concentration of oxygen is through the use of a nonrebreathing circuit (closed).

The ventilator variable that causes inspiration is called the a. cycle. b. trigger. c. flow. d. pressure.

ANS: B The phase variable that initiates the change from exhalation to inspiration is called the trigger. Breaths may be pressure triggered or flow triggered based on the sensitivity setting of the ventilator and the patient's inspiratory effort or time triggered based on the rate setting of the ventilator.

A patient was admitted to the critical care unit with acute respiratory failure. The patient has been on a ventilator for 3 days and is being considered for weaning. The ventilator high-pressure alarm keeps going off. When you enter the room, the ventilator inoperative alarm sounds. Which of the following criteria would indicate that the patient is ready to be weaned? a. FiO2 greater than 50% b. Rapid shallow breathing index less than 105 c. Minute ventilation greater than 10 L/min d. Vital capacity/kg greater than or equal to 15 mL

ANS: B The rapid shallow breathing index (RSBI) has been shown to be predictive of weaning success. To calculate the RSBI, the patient's respiratory rate and minute ventilation are measured for 1 minute during spontaneous breathing. The measured respiratory rate is then divided by the tidal volume (expressed in liters). An RSBI less than 105 is considered predictive of weaning success. If the patient meets criteria for weaning readiness and has an RSBI less than 105, a spontaneous breathing trial can be performed.

Long-term ventilator management over 21 days is best handled through use of a(n) a. oropharyngeal airway. b. esophageal obturator airway. c. tracheostomy tube. d. endotracheal intubation.

ANS: C Although no ideal time to perform the procedure has been identified, it is commonly accepted that if a patient has been intubated or is anticipated to be intubated for longer than 7 to 10 days, a tracheostomy should be performed.

Use of oxygen therapy in the patient who is hypercapnic may result in a. oxygen toxicity. b. absorption atelectasis. c. carbon dioxide retention. d. pneumothorax.

ANS: C Deoxygenated hemoglobin carries more CO2 compared with oxygenated hemoglobin. Administration of oxygen increases the proportion of oxygenated hemoglobin, which causes increased release of CO2 at the lung level. Because of the risk of CO2 accumulation, all patients who are chronically hypercapnic require careful low-flow oxygen administration.

Nursing interventions to limit the complications of suctioning include a. inserting the suction catheter no more than 5 inches. b. premedicating the patient with atropine. c. hyperoxygenating the patient with 100% oxygen. d. increasing the suction to 150 mm Hg.

ANS: C Hypoxemia can be minimized by giving the patient three hyperoxygenation breaths (breaths at 100% FiO2) with the ventilator before the procedure and again after each pass of the suction catheter.

A patient was admitted to the critical care unit with acute respiratory failure. The patient has been on a ventilator for 3 days and is being considered for weaning. The ventilator high-pressure alarm keeps going off. When you enter the room, the ventilator inoperative alarm sounds. Which of the following criteria would indicate that the patient is not tolerating weaning? a. A decrease in heart rate from 92 to 80 beats/min b. An SpO2 of 92% c. An increase in respiratory rate from 22 to 38 breaths/min d. Spontaneous tidal volumes of 300 to 350 mL

ANS: C Weaning intolerance indicators include (1) a decrease in level of consciousness; (2) a systolic blood pressure increased or decreased by 20 mm Hg; (3) a diastolic blood pressure greater than 100 mm Hg; (4) a heart rate increased by 20 beats/min; (5) premature ventricular contractions greater than 6/min, couplets, or runs of ventricular tachycardia; (6) changes in ST segment (usually elevation); (7) a respiratory rate greater than 30 breaths/min or less than 10 breaths/min; (8) a respiratory rate increased by 10 breaths/min; (9) a spontaneous tidal volume less than 250 mL; (10) a PaCO2 increased by 5 to 8 mm Hg or pH less than 7.30; (11) an SpO2 less than 90%; (12) use of accessory muscles of ventilation; (13) complaints of dyspnea, fatigue, or pain; (14) paradoxical chest wall motion or chest abdominal asynchrony; (15) diaphoresis; and (16) severe agitation or anxiety unrelieved with reassurance.

The correct procedure for selecting an oropharyngeal airway is to: a. measure from the tip of the nose to the ear lobe. b. measure from the mouth to the ear lobe. c. measure from the tip of the nose to the middle of the trachea. d. measure the airway from the corner of the patient's mouth to the angle of the jaw.

ANS: D An oropharyngeal airway's proper size is selected by holding the airway against the side of the patient's face and ensuring that it extends from the corner of the mouth to the angle of the jaw. If the airway is improperly sized, it will occlude the airway. Nasopharyngeal airways are measured by holding the tube against the side of the patient's face and ensuring that it extends from the tip of the nose to the ear lobe.

Which of the following statements best describes the effects of positive-pressure ventilation on cardiac output? a. Positive-pressure ventilation increases intrathoracic pressure, which increases venous return and cardiac output. b. Positive-pressure ventilation decreases venous return, which increases preload and cardiac output. c. Positive-pressure ventilation increases venous return, which decreases preload and cardiac output. d. Positive-pressure ventilation increases intrathoracic pressure, which decreases venous return and cardiac output.

ANS: D Positive-pressure ventilation increases intrathoracic pressure, which decreases venous return to the right side of the heart. Impaired venous return decreases preload, which results in a decrease in cardiac output.

Preset positive pressure used to augment the patient's inspiratory effort is known as a. positive end-expiratory pressure (PEEP). b. continuous positive airway pressure (CPAP). c. pressure control ventilation (PCV). d. pressure support ventilation (PSV).

ANS: D Preset positive pressure used to augment the patient's inspiratory efforts is known as pressure support ventilation. With continuous positive airway pressure, positive pressure is applied during spontaneous breaths; the patient controls rate, inspiratory flow, and tidal volume. Positive end-expiratory pressure is positive pressure applied at the end of expiration of ventilator breaths.

Which of the following arterial blood gas values would indicate a need for oxygen therapy? a. PaO2 of 80 mm Hg b. PaCO2 of 35 mm Hg c. HCO3− of 24 mEq d. SaO2of87%

ANS: D The amount of oxygen administered depends on the pathophysiologic mechanisms affecting the patient's oxygenation status. In most cases, the amount required should provide an arterial partial pressure of oxygen (PaO2) of greater than 60 mm Hg or an arterial hemoglobin saturation (SaO2) of greater than 90% during both rest and exercise.

The nurse is caring for a patient with status asthmaticus in the emergency department. The nurse anticipates what therapies to be ordered? Select all that apply. a. Inhaled anticholinergic agent b. Inhaled rapid-acting beta-2 agonists c. Oxygen administration d. Systemic corticosteroids

All of the above

Mr. Z is admitted with acute lung failure. Which statement describes appropriate action for optimizing his oxygenation and ventilation? Place Mr. Z in a supine position. Allow Mr. Z to rest in between nursing interventions. Perform vigorous postural drainage and chest percussion to facilitate secretion clearance. Make sure Mr. Z coughs every 2 hours even if he has no secretions.

Allow Mr. Z to rest in between nursing interventions.

Ms. R has been in the progressive care unit for 3 days with a diagnosis of pneumonia. She is being treated with antibiotics, 50% oxygen, and vigorous pulmonary toilet. Which diagnostic testing result would indicate early progression of her condition to acute lung injury? PaO2/FiO2 ratio of 325 Arterial PaO2 of 58 mm Hg Arterial PaCO2 of 58 mm Hg Arterial blood pH of 7.29

Arterial PaO2 of 58 mm Hg

Which statement is true regarding status asthmaticus? Initial arterial blood gas levels indicate severe hypoxemia and respiratory acidosis. Low-flow oxygen therapy should be used cautiously in patients with asthma. Small, frequent doses of bronchodilators should begin immediately. Intravenous or oral corticosteroids usually take 6 to 8 hours to take effect.

Intravenous or oral corticosteroids usually take 6 to 8 hours to take effect.

Which mode of ventilation uses low tidal volume in conjunction with normal respiratory rates to limit the effects of barotraumas in patients with adult respiratory distress syndrome (ARDS)? Assist control (A/C) ventilation Permissive hypercapnia Pressure control ventilation (PCV) Continuous positive airway pressure (CPAP)

Permissive hypercapnia

The nurse is admitting a patient with severe community-acquired pneumonia. Select all interventions that are appropriate for this patient. Start intravenous (IV) antibiotics. Place the patient on the monitor and obtain vital signs. Obtain sputum cultures and laboratory work. Inquire about allergies and current medications. Start a peripheral IV.

Start intravenous (IV) antibiotics. Place the patient on the monitor and obtain vital signs. Obtain sputum cultures and laboratory work. Inquire about allergies and current medications. Start a peripheral IV.

The nurse is discussing the pharmacologic treatment of a pulmonary embolism (PE) with a nursing student. Which statement made by the nursing student indicates that the education was effective? Heparin is administered to break down the existing clots. Heparin is titrated to achieve a prothrombin time of two to three times the control value. Heparin should be continued until the warfarin is started. Streptokinase can be used to treat patients with massive pulmonary embolism and hemodynamic instability.

Streptokinase can be used to treat patients with massive pulmonary embolism and hemodynamic instability.

The nurse is listening to a lecture on the physiological consequences of acute respiratory distress syndrome (ARDS). Which statement indicates that teaching has been effective? a. "ARDS is associated with decreased compliance." b. "ARDS is associated with decreased physiological dead space." c. "ARDS is associated with increased resistance." d. "ARDS is associated with Pulmonary fibrosis."

a. "ARDS is associated with decreased compliance." ARDS is associated with decreased lung compliance.

The nurse is assessing a patient for a possible pulmonary embolus. Assessment findings may include which of the following? Select all that apply. a. Acute onset of chest pain b. Hemoptysis c. Low oxygen saturation level d. Pleural friction rub

a. Acute onset of chest pain b. hemoptysis c. low oxygen saturation level Chest pain, hemoptysis, and a low oxygen saturation level are signs and symptoms of pulmonary embolus. A pleural friction rub is seen with disorders such as pleural effusion.

The nurse is caring for a patient at risk for respiratory failure. Which assessment findings would alert the nurse to potential respiratory failure? a. Anxiety and restlessness b. Cyanosis and hyperventilation c. Dyspnea and nasal flaring d. Hypertension and bradycardia

a. Anxiety and restlessness Neurological changes, such as anxiety and restlessness, are early signs of hypoxemia in respiratory failure. Other early signs are tachycardia and increased blood pressure. Cyanosis, dyspnea, and nasal flaring are later signs.

Lung-protective strategies for mechanical ventilation to treat acute respiratory distress syndrome while also preventing complications include which of the following? a. High levels of sedation b. Low tidal volume of 6 mL/kg ideal body weight c. Oxygen levels (FiO2) 0.80-1.00 d. Positive end-expiratory pressure (PEEP) 25 cm H2O or higher

b. Low tidal volume of 6 mL/kg ideal body weight The target tidal volume is 6 mL/kg. High levels of sedation may be needed but are not a protective strategy. The target lung-protective oxygen level is 0.6. Lower levels of PEEP are desirable as the risk for barotrauma increases with higher levels of PEEP.

Which of the following are nursing interventions to prevent ventilator-associated pneumonia (VAP)? Select all that apply. a. Elevate the head of bed to at least 30 degrees. b. Intubate the patient with an endotracheal tube with continuous subglottic aspiration of secretions. c. Maintain a deep level of sedation. d. Provide regular oral care, including the use of chlorhexidine.

a. Elevate the head of bed to at least 30 degrees. d. Provide regular oral care, including the use of chlorhexidine. Maintaining the head of bed at 30 to 45 degrees and providing oral care are two interventions to prevent VAP that the nurse can implement. The special endotracheal tube reduces the risk for VAP; however, this is not a nursing intervention. The patient should be sedated based on specific targets. Deep sedation should be avoided because it prolongs time on mechanical ventilation, increasing the patient's risk for VAP.

The etiology of pulmonary edema in acute respiratory distress syndrome is related to: a. damage to the alveolar-capillary membrane. b. decreased cardiac output. c. tension pneumothorax. d. volutrauma and hypoxemia.

a. damage to the alveolar-capillary membrane. Noncardiogenic pulmonary edema is seen in ARDS secondary to damage to the alveolar-capillary membrane. Decreased cardiac output, tension pneumothorax, volutrauma, and hypoxemia are not causes.

A mechanically ventilated patient has a fever, P/F ratio of 230, and a pulmonary artery occlusive pressure of 15 mm Hg. The patient is coughing and triggering the high-pressure alarm on the ventilator. The radiologist has notified the nurse that the patient?s feeding tube is in the right lung, and the patient has developed bilateral infiltrates on the radiograph. The nurse is concerned that the patient is developing: acute pulmonary embolism. acute lung injury. pneumothorax. inadequate nutrition.

acute lung injury.

The nurse is drawing labs on a patient with COPD in the critical care unit. Which baseline arterial blood gases (ABGs) should the nurse expect for this patient? a. PaO2 50 mm Hg and PaCO2 35 mm Hg b. PaO2 55 mm Hg and PaCO2 55 mm Hg c. PaO2 80 mm Hg and PaCO2 50 mm Hg d. PaO2 75 mm Hg and PaCO2 40 mm Hg

b. PaO2 55 mm Hg and PaCO2 55 mm Hg The patient with COPD typically has hypoxemia and an elevated carbon dioxide level.

A patient in acute respiratory failure is experiencing carbon dioxide narcosis secondary to increased CO2 retention. What assessment finding should the nurse expect? a. Nasal flaring b. Paradoxical respirations c. Somnolence d. Suprasternal muscle retractions

c. Somnolence Somnolence, lethargy, and coma are seen with CO2 retention. Nasal flaring, paradoxical respirations, and muscle retracts are seen with respiratory muscle fatigue (clinical alert).

The sputum culture obtained on admission shows Streptococcus pneumoniae in a patient with a history of coronary artery disease and alcoholism. The nurse reflects that the patient has: hospital-acquired pneumonia (HAP). community-acquired pneumonia (CAP). bilateral pneumonia. ventilator-associated pneumonia (VAP).

community-acquired pneumonia (CAP).

The nurse is orienting a new RN in the care of a patient with respiratory distress due to emphysema. The patient is being treated with O2 via a Venturi mask with 35% oxygen. Which statement by the new RN indicates that teaching has been effective, when the nurse questions the new RN about the use of the Venturi mask? a. "A nasal cannula will dry the mucous membranes and cause an increased risk of infection." b. "Her alveoli cannot absorb higher levels of O2 because of the emphysema." c. "Her alveoli have been damaged and may rupture with higher doses of O2." d. "Her respiratory center requires low O2 concentration to stimulate breathing."

d. "Her respiratory center requires low O2 concentration to stimulate breathing." In patients with COPD, the respiratory drive is stimulated by hypoxemia, not increased levels of carbon dioxide. Administration of oxygen in high levels will impair the respiratory drive.

Which of the following treatments should the nurse anticipate administering to a hypoxic patient admitted with exacerbation of COPD? a. Bag-valve-mask ventilation with oxygen at 15 L/min b. Continuous positive airway pressure (CPAP) via face mask c. Non-rebreather mask with 80% oxygen d. Oxygen via Venturi mask at 40% oxygen

d. Oxygen via Venturi mask at 40% oxygen The initial treatment of hypoxemia is delivery of oxygen at a low flow rate. The Venturimask allows a designated percentage of oxygen to be delivered. The initial treatment is low-flow oxygen. If the patient fails to respond to this treatment, noninvasive ventilation (CPAP or BiPAP) may be indicated. A non-rebreather mask at 80% delivers a high percentage of oxygen, which may impair the patient's respiratory drive. Bag-valve-mask ventilation is not indicated.

A patient presents to the emergency department in acute respiratory distress. She has a long-standing history of COPD. Which of the following positions should the nurse place this patient in for optimal tissue perfusion? a. Prone on a stretcher b. In a recliner, leaning back as far as it will go c. Side-lying with head of bed at 15 degrees d. Stretcher with head of bed as high as it will go

d. Stretcher with head of bed as high as it will go A patient with COPD will be most comfortable in an upright position that facilitates lung expansion. Proning will not be tolerated, and a 15-degree elevation is not high enough. A recliner is sometimes helpful, but not leaning back as far as it will go.

The nurse is caring for a patient who has experienced a pulmonary embolism (PE). Important physiologic concepts for the nurse to remember include: the major hemodynamic compromise after PE is pulmonary hypertension. hypercoagulability is the most significant predisposing factor for PE. pulmonary system effects include bronchoconstriction and decreased alveolar dead space. pulmonary vasodilation occurs as a result of mediators released at the injury site.

the major hemodynamic compromise after PE is pulmonary hypertension.


Related study sets

ICS2 Official Practice Test Domain 6: Identity and Access Management

View Set

Chapter 17 - Preoperative Nursing Management

View Set

FRSC 675 Forensic Serology and DNA Analysis Exam 1 Review

View Set

A&P Chapter 15.1-15.4, 12.5-12.6, 19.4/.6: Quiz 10

View Set

Micro Practice Test Ch. 1, 2, 4, 5, 6 (Aplia)

View Set

Management 300 Final Exam Practice Questions

View Set

Chapter 11 Physical and Chemical Control of Microbes

View Set

1. Atmospheric Structures - REVIEW QUESTIONS

View Set

Macroeconomics Chapter 7 Learn Smart

View Set