Precalculus: Vectors, vector component form, Vector Practice--Dot Product and Addition

Ace your homework & exams now with Quizwiz!

105.945 degrees

FInd the direction angle (θ) for vector v = <-2,7>. Round to three decimals.

<7, 4>

Find component form with initial point (-3,1) terminal point (4,5).

<3, 8>

Find component form with initial point (0, -2) terminal point (3,6).

<3, -8>

Find component form with initial point (3,6) terminal point (0,-2).

<-7, -4>

Find component form with initial point (4,5) terminal point (-3,1).

<85.6, 86.5>

Find the component form of the resultant for the Force vectors given: F1 : magnitude = 60 lbs, θ = 80° F2 : magnitude = 80 lbs, θ = 20°

79°

Find the direction of <1,5>

53°

Find the direction of <3,4>

37°

Find the direction of <4,3>

√61

Find the magnitude <6, 5>

121.66 lbs

Find the magnitude of the resultant for the Force vectors given: F1 : magnitude = 60 lbs, θ = 80° F2 : magnitude = 80 lbs, θ = 20°

5

Find the magnitude. <3,4>

√34

Find the magnitude. <3,5>

2√5

Find the magnitude. <4, 2>

13

Find the magnitude. <5, 12>

-16

Find u · v if u = -3i + j and v = 5i - j.

-23

Find u · v if u = 2i - 5j and v = 6i + 7j.

73

Find u · v if u = ⟨4, 25⟩ and v = ⟨-13, 5⟩.

8

Find u · v if u = ⟨4,0⟩ and v = ⟨2,1⟩.

56

Find u · v if u = ⟨8, 2⟩ and v = ⟨6, 4⟩.

-8

Find w · v if v = ⟨1,-3⟩ and w = ⟨-2,2⟩.

⟨20, -20⟩

If A(6, 11) and B(-14, 31), find components for vector BA

⟨10, -5⟩

If A(8, -3) and B(18,-8), find components for vector AB.

⟨-6, 10⟩

If u= ⟨0, 8⟩ and v = ⟨-3, 1⟩, find u + 2v.

⟨17, 15⟩

If u= ⟨20, 1⟩ and v = ⟨-3, 14⟩, find u + v.

⟨9, 8⟩

If u= ⟨20, 6⟩ and v = ⟨-3, 15⟩, find (1/2)u + (1/3)v.

⟨7, -6⟩

If u= ⟨5, -1⟩ and v = ⟨3, 4⟩, find 2u - v.

neither

Parallel, orthogonal or neither? u=<-2, 2/3> and v=<5, -15>

dot product

a=<a₁,a₂> b= <b₁,b₂> a·b= a₁·b₁ + a₂·b₂

horizontal component

a=v·cosθ

vertical component

b=v·sinθ

56.8 degrees

find the angle between the given vectors u=3i+2j, v=-4i-2j

121.5 degrees

find the angle between the given vectors u=3i-2j, v=-4i-2j

147.1 degrees

find the angle between the given vectors u=4i+5j, v=-6i-2j

32.9 degrees

find the angle between the given vectors u=4i-5j, v=6i-2j

8.25

find the magnitude of the vector u= <-2,-8>

5.38

find the magnitude of the vector u= <-2,5>

10.0

find the magnitude of the vector u= <0,10>

5

find the magnitude of the vector u= <3,-4>

7.21

find the magnitude of the vector u=4i-6j

10.63

find the magnitude of the vector u=7i+8j

10.63

find the magnitude of the vector u=7i-8j

vector

has both magnitude and direction

scalar

something described by a single real number.

representing a vector in rectangular coordinates

start at end, subtract from the beginning: V= (x₂-x₁)i + (y₂-y₁)j

magnitude

√a²+b²


Related study sets

Chapter 18 Review - Virtualization

View Set

Certificación Inteligencia de Mercados (PDV)

View Set

the third force: humanism and personality

View Set

SYSB13 Business Process Management

View Set

personal finance - final exam review

View Set

Intermediate Microeconomics Midterm 2 (Chapters 4-7, skip 5)

View Set

Security+ 601 Practice Questions 2:

View Set