quiz 2 review

Ace your homework & exams now with Quizwiz!

if f(x)= 3x+2, g(x)= x^2 - 4, and h(x)=x-1, find (fogoh)(x)

3x^2-6x-7

if f(x)= 2x^2 - 5x + 3 find f(a+h) - f(a) / h

4a + 2h -5

if f(x)= 2x^2 - 5x + 3 find 2f(a)

4a^2 - 10a + 6

a rectangle has an area of 25 square meters. express the perimeter as a function of the length of a side

50/w + 2w

if f(x)= 2x^2 - 5x + 3 find -f(a)

-2a^2 + 5a - 3

express f(x)= |x-4|/x-4 as a piecewise function

1 if x>4 -1 if x<4

if f(x)= 2x^2 - 5x + 3 find f(-2)

21

if f(x)= 2x^2 - 5x + 3 find f(a+h)

2a^2 + 4ah + 2h^2 - 5a + 5h + 3

if f(x)= 2x^2 - 5x + 3 find f(-a)

2a^2 + 5a + 3

if f(x)= 2x^2 - 5x + 3 find f(a)

2a^2 - 5a + 3

if f(x)= 2x^2 - 5x + 3 find f(a)+h

2a^2 -5a + 3 + h

if f(x) = 3x + 2 find f(a+h)-f(a)/h

3

translation of f(x)= cube root (2x) - 4

(-2,1) (-4,7) (0,7)

find the domain of f(x)=log(3x+5)

(-5/3, infinity)

find the domain of f(x)= 1/3x+4

(-infinity, -4/3) u (-4/3, +infinity)

find the domain of f(x)= (x+5)/x^2-4x+3

(-infinity, 1) u (1,3) u (3, +infinity)

find the domain of f(x)= log (x-2)/x+3

(-inifinity, -3) u (2, infinity)

find the domain of f(x)= sqrt x^2 - 5x - 6

(-inifinty, -1] u [6, inifinity)

find the domain of f(x)= sqrt 3-2x

(-inifinty, 3/2]

decreasing function

(1/5)^x

translation of -2f(3x)+4

(2/3, -4) (0,4) (4/3, 4)

if x=c is a zero of a polynomial function (f(c)=0) then

(x-c) is a factor

if f(x)= 3x+2 & g(x)= x^2 - x -2 find and state the domain of: - (fg)(x) -(f/g)(x)

- 3x^3 - x^2 - 8x - 4, domain: (-infinity, infinity) - 3x+2/x^2 - x -2, domain (-infinity, -1) u (-1,2) u (2, infinty)

if you rent a car for one week and drive 500 miles you will be charged $250. if you drive 800 miles, you will be charged $280 - find the cost function - what is the slope? interpret this value - what is the y-intercept? interpret this value

- m= .1 - slope= .1m (10 cents) is the cost per mile - y-intercept= (0, 200) the base cost to rent the car even if you do not drive it

if f(x)= sqrt x-2 & g(x)= x^2 - x -5 find and state the domain of: - (f+g)(x) -(f-g)(x) -(fg)(x)

- sqrt x-2 + x^2 - x - 5, domain: [2, infinity) - sqrt x-2 - x^2 + x + 5, domain: [2, infinity0 - 50, domain: [2, infinity)

if f(x)= x^2 +2 & g(x)= sqrt x-4 find and state the domain of: - (fog)(x) - (gof)(x) - (fof)(x) - (gog)(x)

- x-2, domain: [4, infinity) - sqrt x^2 - 2, domain: (-infinity, -sqrt 2) u (sqrt 2, infinity) - x^4 + 4x^2 +6, domain: (-infinity, infinity) - 0

if f(x) = x+3 / x+1 find f(x)-f(1)/x-1

-1/x+1

if f(x)= sqrt x find f(x+h)-f(x) / h

1 / sqrt x+h + sqrt x

undefined acts when finding domain

1. vision by zero 2. even roots of negative numbers 3. logs of zero or negative numbers

if f(x)= 2x^2 - 5x + 3 find f(2a)

8a^2 - 10a + 3

a closed rectangular box with a volume of 8 cubic feet has a length that is twice the width. express the height of a box as a function of the width

H(w)= 4/w^2

a box is made from a rectangle that measures 4ft x 5ft by cutting out a square from each side. express the volume of the box as a function of the length of the square

V(x)= x(5-2x)(4-2x)

standard/vertex form of quadratic models

a(x-h)^2 + k

cf(x)

c(y)

f(x)-c

down c units, y-c

determine if f(x)= 4x/x^4 + 2 is even, odd, or neither

even

if f(-x) = f(x) then the function is

even

if f(x)= x^2 + 2 if x<0 -x+1 if x>0 evaluate f(-1), f(1), and f(0) & state the domain & range

f(-1)= 3 f(1)= 0 f(0)= undefined domain: (-infinity, 0) u (0, infinity) range: (-infinity, 1) u (2, infinity)

if f(x)= x+2 if x<0 1-x if x >/= 0 evaluate f(-1), f(1), and f(0) & state the domain & range

f(-1)=1 f(1)=0 f(0)=1 domain: (-infinity, infinity) range: (-infinity,2)

find an example of an increasing function that passes through (3,8)

f(x)= 2^x

rational function

f(x)= 3x + 2/ x^2 -4

quadratic function

f(x)= 3x^2 + 2x - 5

polynomial function

f(x)= 3x^4 - 2x^3 + 8x - 7

exponential function

f(x)= 5^3x+2

increasing function

f(x)= 5^x

general form of quadratic models

f(x)= ax^2 + bx + c

trig function

f(x)= sin(3x+2)

radical function

f(x)= sqrt 3x+2

a quadratic function that has a vertex of (2,1) passes through (3,2)

f(x)=(x-2)^2 +1

if f(3)=f(-2)+f(4)=0 and f(2)=16 find the cubic polynomial function

f(x)=2(x-3)(x+2)(x-4)

linear function

f(x)=3x+2

f(x+c)

left c units, x-c

log function

log(3x+2)

determine if f(x)= 2x^2 - x + 1 is even, odd, or neither

neither

determine is f(x)= 3x/x^2 + 2 is even, odd, or neither

odd

if f(-x)= -f(x0 then the function is

odd

if a function is odd it is symmetric about the

origin

-f(x)

reflection over x-axis, -y

f(-x)

reflection over y-axis, x/-1

f(x-c)

right c units, x+c

express the area of an equilateral triangle as a function of the length of a side

sqrt 3/4 x^2 = A

f(x)+c

up c units, y+c

if f(x)= x^2 - x + 2 find f(x) - f(2) / x-2

x+1

express f(x)= |x+3| as a piecewise function

x+3 if x>/= -3 -x-3 if x<-3

f(cx)

x/c

if a function is even it is symmetric about the

y axis

point-slope form

y-y1=m(x-x1)

find the equation of a line through (3,-2) and (-4,5)

y=-x+1

slope-intercept form

y=mx+b


Related study sets

ABLLS-R: H13. Answers "Where" questions regarding activities done at home (probe set)

View Set

Scaled Agile 4.6 SAFE Release Train Engineer Certification Course

View Set

Chapter 12 PHR and Patient Portals

View Set