Honors PreCalc Ch 5
Sinø = y Cosø = x Tanø = y/x Cscø = 1/y Secø = 1/x Cotø = x/y
Fundamental Identity of all 6 trig functions
Sin(x-y) = sin(x)cos(y) - sin(y)cos(x)
Sine difference identity
Sin(x+y) = sin(x)cos(y) + sin(y)cos(x)
Sine sum identity
Tan(x-y) = tan(x) - tan(y) / 1 + tan(x)tan(y)
Tangent difference identity
Quadrant in which x/2 lies
What determines the sign for the half angle formulas
Sin(x)sin(y) = 1/2[cos(x-y) - cos(x+y)] Cos(x)cos(y) = 1/2[cos(x-y) + cos(x+y)] Sin(x)cos(y) = 1/2[sin(x+y) + sin(x-y)] Cos(x)sin(y) = 1/2[sin(x+y) - sin(x-y)]
4 Product to Sum Formulas
Cos(-ø) = cosø Sec(-ø) = secø
2 Even Identities of trig functions
Sin(2x) = 2sin(x)cos(x) Cos(2x) = cos^2(x) - sin^2(x) = 1 - 2sin^2(x) = 2cos^2(x) - 1 Tan(2x) = 2tan(x) / 1 - tan^2(x)
3 Double Angle Formulas
Sin(x/2) = +/- <1 - cos(x) / 2> Cos(x/2) = +/- <1 + cos(x) / 2> Tan(x/2) = 1 - cos(x) / sin(x) = sin(x) / 1 + cos(x)
3 Half Angle Formulas
Sin^2(x) = 1 - cos(2x) / 2 Cos^2(x) = 1 + cos(2x) / 2 Tan^2(x) = 1 - cos(2x) / 1 + cos(2x)
3 Power Reducing Formulas
Sin(-ø) = -sinø Csc(-ø) = -cscø Tan(-ø) = -tanø Cot(-ø) = -cotø
4 Odd Identities of trig functions
Sin(x) + sin(y) = 2sin(x+y/2)cos(x-y/2) Sin(x) - sin(y) = 2sin(x-y/2)cos(x+y/2) Cos(x) + cos(y) = 2cos(x+y/2)cos(x-y/2) Cos(x) - cos(y) = -2sin(x+y/2)sin(x-y/2)
4 Sum to Product Formulas
1) Use basic identities to simplify trigonometric functions 2) Factor if necessary 3) Get trigonometric functions on one side and numerical values on the other 4) Solve for x using the Unit Circle
4 steps for solving Trigonometric Equations
Tanø = cot(pi/2 - ø) Cotø = tan(pi/2 - ø) Secø = csc(pi/2 - ø) Cscø = sec(pi/2 - ø) Sinø = cos(pi/2 - ø) Cosø = sin(pi/2 - ø)
Cofunction Identity of all 6 trig functions
Cos(x-y) = cos(x)cos(y) + sin(y)sin(x)
Cosine difference identity
Cos(x+y) = cos(x)cos(y) - sin(y)sin(x)
Cosine sum identity
Sin^2ø + cos^2ø = 1 Tan^2ø + 1 = sec^2ø 1 + cot^2ø = csc^2ø
Pythagorean Identity of all 6 trig functions (3)
Tanø = sinø/cosø Cotø = cosø/sinø
Quotient Identity of all 6 trig functions (2)
Sinø = 1/cscø Cosø = 1/secø Tanø = 1/cotø Cscø = 1/sinø Secø = 1/cosø Cotø = 1/tanø
Reciprocal Identity of all 6 trig functions
Tan(x+y) = tan(x) + tan(y) / 1 - tan(x)tan(y)
Tangent sum identity
0 (1, 0), pi/6 (<3>/2, 1/2), pi/4 (<2>/2, <2>/2), pi/3 (1/2, <3>/2), pi/2 (0, 1), 2pi/3 (-1/2, <3>/2), 3pi/4 (-<2>/2, <2>/2), 5pi/6 (-<3>/2, 1/2), pi (-1, 0), 7pi/6 (-<3>/2, -1/2), 5pi/4 (-<2>/2, -<2>/2), 4pi/3 (-1/2, -<3>/2), 3pi/2 (0, -1), 5pi/3 (1/2, -<3>/2), 7pi/4 (<2>/2, -<2>/2), 11pi/6 (<3>/2, -1/2)
Unit Circle from 0 to 11pi/6 w ordered pairs
pin
What to add to the solution of a trig equation when it could refer to more than one angle
2pin
What to add to the solution of a trig equation when it is only one specific angle and there are no restrictions